


Corrigendum

Corrigendum to “New REMPI observations and analyses for Rydberg and ion-pair states of HI” [J. Mol. Spectrosc. 290 (2013) 5–12]

Helgi Rafn Hróðmarsson, Huasheng Wang, Águst Kvaran*

Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland

1. Introduction

This article presents a comprehensive overview of Rydberg and ion-pair states for HI in the two-photon excitation region of 69,600–72,300 cm⁻¹. There are two errors in the paper that need to be addressed. These are associated with (i) the wavelength calibration and (ii) the assignment of the $d^3\Pi_0(1)$ Rydberg state spectrum.

2. Calibration

Table 3 in Ref. [1] includes band origins (v^0) and rotational parameters (B_v and D_v) for all the observed states in the energy region of concern. The calibration of the spectrum was based on observed atomic iodine (2 + 1) REMPI peaks. Only few atomic peaks are found in the region of 69,600 and 70,900 cm⁻¹. Therefore, some of the band origins in that region were not clearly determined. Later identification of weak atomic lines in the region of the Q lines of the H(1) state spectrum allowed more precise determinations of the rotational line positions. See Table 1 for corrected values of band origins. Accordingly, Q rotational lines of the $k^3\Pi_0(1)$ state spectrum, have also been reassigned (see Table 2).

3. Reassignment of the $d^3\Pi_0(1)$ Rydberg state spectrum

A Rydberg state spectrum was observed with band origin of 70991.6 cm⁻¹. It had not been observed previously. The most probable reasons why the spectrum had gone unnoticed are (i) that its Q branch are found right in the midst of a strong iodine atomic line (in REMPI) and (ii) its other rotational branches are very weak.

The original rotational analysis of the spectrum incorrectly suggested a Rydberg state of $\Omega = 0$. This is incorrect, since the spectrum exhibits R and P lines, which excludes an $\Omega = 0$ state and implies either an $\Omega = 1$ or $\Omega = 2$ Rydberg state. A revised rotational analysis, revealed that the state is in fact an $\Omega = 1$ state with a band origin of $v^0 = 70989.0$ cm⁻¹.

Additionally, the first P line of the spectrum was incorrectly assigned. It is actually the first and only visible S line of the

Table 1

Corrections of band origins (v^0) along with the values presented in the original paper and given by Ginter et al. [2].

	v^0 (cm ⁻¹) corrected	v^0 (cm ⁻¹) Ginter et al.	v^0 (cm ⁻¹) Hróðmarsson et al.
$f^3\Delta_1(0)$	69689.0	69687.9	69699.9
$V^1\Sigma^+(m+4)$	69909.9	69909.9	69903.3
$F^1\Delta_2(0)$	70229.7	70228.3	70223.6
$E^1\Sigma^+(1)$	70242.2	70242.1	70236.1
$k^3\Pi_0(1)$	70322.9	70320.4	70310.8
$V^1\Sigma^+(m+5)$	70517.3	70512.0	70511.0
$m^3\Delta_2(0)$	70841.6	70837.6	70841.5
$H^1\Sigma^+(1)$	70855.5	70850.5	70866.3

Table 2

Corrections of Q line positions of the $k^3\Pi_0(1)$ state as presented in Ref. [1].

j	$k^3\Pi_0(1)$ –Q lines – corrected	$k^3\Pi_0(1)$ –Q lines – Ref. [1]
0	70322.9	70310.8
1	70320.6	70308.6
2	70315.1	70304.0
3	70307.7	70296.4
4	70296.8	70286.1
5	70284.7	70274.7

Table 3

Rotational lines due to two-photon resonance transitions to a reassigned $n^3\Pi_1(0)$ Rydberg state of HI.

J'	P	Q	R
1		70989.5	70998.5
2	70967.4	70989.3	71009.2
3		70988.0	71024.6
4		70986.8	71039.4
5		70985.7	71051.5
6		70984.6	71059.0
7		70983.0	
8		70981.5	

$V^1\Sigma^+(m+6)$ ion-pair state spectrum with band origin of 70952.3 cm⁻¹. A peak observed at 70967.4 cm⁻¹, on the other hand, is reassigned to the first and only visible P line.

DOI of original article: <http://dx.doi.org/10.1016/j.jms.2013.06.007>

* Corresponding author.

E-mail address: agust@hi.is (Á. Kvaran).

The intensities of the I^+ lines are generally found to be marginally larger than those of the HI^+ lines. This excludes a $\Omega = 2$ state. On the other hand, the intensity ratios are found to be very similar to those of other $^3\Pi$ states, e.g. $k^3\Pi_1$ and $m^3\Pi_1$ [1–4]. The state of concern does, however, not correlate with any vibrational progressions of previously observed $^3\Pi_1$ states [5,6]. Therefore, we assign the spectrum to the $n^3\Pi_1(0)$ Rydberg state with the electron configuration $(\sigma^2\pi^3)5d\pi$. Rotational assignments are presented in Table 3.

Acknowledgments

The financial support of the University Research Fund, University of Iceland of Iceland, the Icelandic Science Foundation (Grant No. 130259-051) is gratefully acknowledged.

References

- [1] H.R. Hróðmarsson, H.S. Wang, A. Kvaran, New REMPI observations and analyses for Rydberg and ion-pair states of HI, *J. Mol. Spectrosc.* 290 (2013) 5–12.
- [2] H.R. Hróðmarsson, H. Wang, A. Kvaran, State interactions and illumination of hidden states through perturbations and observations of new states: high energy resonance enhanced multiphoton ionization of HI, *J. Chem. Phys.* 142 (24) (2015) 244312.
- [3] H.R. Hróðmarsson, Á. Kvaran, Revealing photofragmentation dynamics through interactions between Rydberg states: REMPI of HI as a case study, *PCCP* 17 (48) (2015) 32517–32527.
- [4] H.R. Hróðmarsson, H.S. Wang, A. Kvaran, Photofragmentation, state interaction, and energetics of Rydberg and ion-pair states: resonance enhanced multiphoton ionization of HI, *J. Chem. Phys.* 140 (24) (2014) 244304.
- [5] D.S. Ginter, M.L. Ginter, Electronic spectra and structure of the hydrogen halides: characterization of the electronic structure of HI lying between 67,800 and 74,400 cm^{-1} above $X^1\Sigma^+$, *J. Mol. Spectrosc.* 92 (1) (1982) 40–54.
- [6] M.L. Ginter, S.G. Tilford, A.M. Bass, Electronic spectra and structure of hydrogen halides – states associated with $(\sigma^2\pi^3)c\pi$ and $(\sigma^2\pi^3)c\sigma$ configurations of HI and DI, *J. Mol. Spectrosc.* 57 (2) (1975) 271–283.