

Data availability and requirements relevant for the *Ariel* space mission and other exoplanet atmosphere applications

Katy L. Chubb ^{1,2}★ Séverine Robert, ³ Clara Sousa-Silva, ^{4,5}★ Sergei N. Yurchenko ⁶★
 Nicole F. Allard ⁷ Vincent Boudon, ⁸ Jeanna Buldyreva, ⁹ Benjamin Bultel, ¹⁰ Athena Coustenis, ¹¹
 Aleksandra Foltynowicz, ¹² Iouli E. Gordon ¹³ Robert J. Hargreaves ¹³ Christiane Helling, ^{14,15}
 Christian Hill, ¹⁶ Helgi Rafn Hrodmarsson, ¹⁷ Tijs Karman, ¹⁸ Helena Lecoq-Molinos, ^{14,15,19}
 Alessandra Migliorini ²⁰ Michaël Rey, ²¹ Cyril Richard, ⁸ Ibrahim Sadiek, ²² Frédéric Schmidt, ¹⁰
 Andrei Sokolov, ⁶ Stefania Stefani, ²⁰ Jonathan Tennyson ⁶ Olivia Venot ¹⁷ Sam O. M. Wright, ⁶
 Rosa Arenales-Lope, ²³ Joanna K. Barstow ²⁴ Andrea Bocchieri, ²⁵ Nathalie Carrasco, ²⁶
 Dwaipayan Dubey, ²³ Oleg Egorov, ²⁷ Antonio García Muñoz, ²⁸ Ehsan (Sam) Gharib-Nezhad, ²⁹
 Leonardos Gkouvelis, ²³ Fabian Grübel, ²³ Patrick Gerard Joseph Irwin ³⁰ Antonín Knížek, ³¹
 David A. Lewis, ¹⁴ Matt G. Lodge ¹ Sushuang Ma, ⁶ Zita Martins, ³² Karan Molaverdikhani ²³
 Giuseppe Morello, ³³ Andrei Nikitin, ²⁷ Emilie Panek, ³⁴ Miriam Rengel, ³⁵ Giovanna Rinaldi, ²⁰
 Jack W. Skinner, ^{36,37} Giovanna Tinetti, ⁶ Tim A. van Kempen, ³⁸ Jingxuan Yang ³⁰
 and Tiziano Zingales ^{39,40}

Affiliations are listed at the end of the paper

Accepted 2024 September 4. Received 2024 August 7; in original form 2024 March 29

ABSTRACT

The goal of this white paper is to provide a snapshot of the data availability and data needs primarily for the *Ariel* space mission, but also for related atmospheric studies of exoplanets and cool stars. It covers the following data-related topics: molecular and atomic line lists, line profiles, computed cross-sections and opacities, collision-induced absorption and other continuum data, optical properties of aerosols and surfaces, atmospheric chemistry, UV photodissociation and photoabsorption cross-sections, and standards in the description and format of such data. These data aspects are discussed by addressing the following questions for each topic, based on the experience of the ‘data-provider’ and ‘data-user’ communities: (1) what are the types and sources of currently available data, (2) what work is currently in progress, and (3) what are the current and anticipated data needs. We present a GitHub platform for *Ariel*-related data, with the goal to provide a go-to place for both data-users and data-providers, for the users to make requests for their data needs and for the data-providers to link to their available data. Our aim throughout the paper is to provide practical information on existing sources of data whether in data bases, theoretical, or literature sources.

Key words: Data Methods – Numerical methods – Algorithms – Ariel – Data needs.

1 INTRODUCTION

1.1 The *Ariel* space mission

The *Ariel* space mission is due to launch in 2029. It will measure spectra of exoplanet atmospheres between 0.5 and 7.8 μm ($\sim 1280\text{--}20\,000\text{ cm}^{-1}$), with the highest resolving power ($R = 100$) between 1.95 and 3.9 μm ($\sim 2500\text{--}5100\text{ cm}^{-1}$), undertaking a chemical survey of around 1000 of the planets in our galaxy (Tinetti et al. 2018; Venot et al. 2018a; Zingales et al. 2018). *Ariel* will be used to constrain elemental abundances in hot gas giant atmospheres (Wang

et al. 2023b), as well as allowing for detections of rocky Super-Earth atmospheric signatures (Ito et al. 2022) and the observation of temperate exoplanet atmospheres (Encrenaz et al. 2022). *Ariel* has inspired various data challenges, such as in retrievals (Barstow et al. 2022) and machine learning (Changeat & Yip 2023; Nikolaou et al. 2023). As highlighted in Tinetti et al. (2021), there is a synergy between *Ariel* and other exoplanet atmosphere missions; both high-resolution ground-based spectroscopic observations such as the Telescopio Nazionale Galileo (TNG) (Guilluy et al. 2022), and space-based missions such as *PLATO* (*PLAnetary Transits and Oscillations of stars*) and *TESS* (*Transiting Exoplanets Survey Satellite*) (Kálmán et al. 2023), and *JWST* (Changeat et al. 2022).

The *Hubble Space Telescope* (*HST*) has been widely used in exoplanet science; in particular the coverage of optical and UV regions, for example by the Wide Field Camera 3 WFC3/UVIS

* E-mails: katy.chubb@bristol.ac.uk (KLC); csousasilva@bard.edu (CSS); s.yurchenko@ucl.ac.uk (SNY)

Table 1. Summary of *Ariel* instruments and their wavelength coverage and resolving power $R = \frac{\lambda}{\Delta\lambda}$, from Edwards et al. (2019b). AIRS is the *Ariel* InfraRed Spectrometer and NIRSpec the Near-InfraRed Spectrometer. VISPhot, FGS1, and FGS2 are photometers (Szabó et al. 2022).

Instrument	Wavelength range (μm)	Wavenumber range (cm^{-1})	$R = \frac{\lambda}{\Delta\lambda}$
VISPhot	0.5–0.6	16 667–200 000	Photometric bands
FGS 1	0.6–0.81	12 346–16 667	Photometric bands
FGS 2	0.81–1.1	9091–12 346	Photometric bands
NIRSpec	1.1–1.95	5128–9091	20
AIRS Ch0	1.95–3.9	2564–5128	100
AIRS Ch1	3.9–7.8	1282–2564	30

and Space Telescope Imaging Spectrograph (STIS) instruments, are important for understanding aerosol properties in exoplanet atmospheres (Wakeford et al. 2020; Fairman, Wakeford & MacDonald 2024). The WFC3 infrared (IR) instrument has been extensively used for IR observations of hot exoplanet atmospheres, particularly for characterizing H_2O spectral features which have been detected in abundance in such atmospheres (see for example, Iyer et al. 2016). The wider spectral coverage and improvement in spectral resolution of both *Ariel* and *JWST* compared to HST/WFC3 allows for the improved detection and characterization of several molecular species in the optical and IR regions (Guilluy et al. 2022). While *JWST* has a larger telescope than *Ariel*, allowing for observations of smaller cooler exoplanets using less transits (Changeat et al. 2022), *JWST* was designed to make observations for many more astronomy fields than only exoplanets. *Ariel*, on the other hand, will observe simultaneously over a wide wavelength range; it is the first space mission fully dedicated to the study of exoplanet atmospheres and has the unique ability to probe the atmosphere of warm and hot exoplanets with a statistical approach, aiming to observe \sim 1000 exoplanet atmospheres during its first tier (Tinetti et al. 2021). *Ariel* is optimized to observe transiting exoplanets, and can be equally or more efficient than *JWST* for characterizing exoplanets orbiting bright stars (see fig. 8-2 of Tinetti et al. 2021). Meanwhile, some of the exoplanets observed by *JWST* will be used by *Ariel* for calibration purposes in the first months of observation, and will likely be used to refine the *Ariel* target list (Edwards et al. 2019b), highlighting the strong synergy between these two missions.

High-resolution spectroscopy utilizes cross-correlation techniques to allow for the detection of individual species present at lower abundances than can be observed using the lower resolution observations of spectroscopic missions such as *Ariel* (Guilluy et al. 2022). The two types of observation together allow for a more complete understanding of an atmosphere (see for example, Brogi & Line 2019).

Overviews of potential exoplanet targets for *Ariel* can be found in Edwards et al. (2019b) and Edwards & Tinetti (2022). The mission's instrument wavelength coverage is summarized in Table 1. Although the main spectral coverage (besides photometric bands) of *Ariel* is from 1.1 to 7.8 μm , we consider data which cover the wavelength region from the UV to the far infrared, because of their use in atmospheric models relevant to the *Ariel* mission and other exoplanet atmosphere applications, such as climate models and analysing observed spectra from complementary exoplanet atmosphere telescopes. To characterize different exoplanet atmospheres, spectra are typically modelled using radiative transfer calculations. These calculations rely on a priori knowledge, often based on assumptions, of a variety of atmospheric processes, such as: molecular absorption and emission, scattering, chemistry, atmospheric dynamics, cloud formation, and atmosphere–surface interaction.

1.2 Atmospheric modelling and retrieval codes

A comprehensive list of exoplanetary retrieval codes (as of 2023 March) can be found in MacDonald & Batalha (2023), with updates online.¹ Another detailed overview of radiative transfer and retrieval codes (as of 2023 May) can be found in Rengel & Adamczewski (2023). In the *Ariel* science team, several radiative transfer retrieval packages are available, including ARCiS (Ormel & Min 2019; Min et al. 2020), NEMESIS (Irwin et al. 2008), Pyrat Bay (Cubillos & Bleicic 2021), POSEIDON (MacDonald 2023), and TauREx3 (Al-Refaie et al. 2021). They have been compared in the frame of a retrieval challenge for the *Ariel* mission (Barstow et al. 2022). Table 2 lists a non-exhaustive selection of atmospheric modelling and retrieval codes and their respective repositories used in exoplanetary studies. Whilst these multiple retrieval codes all perform the same basic function – comparing a range of typically 1D, parametric radiative transfer simulations to observed data via a sampling algorithm such as MCMC or nested sampling – they each have slightly different methods for parametrizing often complex atmospheric processes. Previous retrieval comparison efforts by Barstow et al. (2020, 2022) showcase the agreement between them for simple cases where all codes are able to implement the same parametrizations. However, Barstow et al. (2020) compared a range of cloud parametrizations and showed that whilst the overall conclusions using each method were not in disagreement with each other, the different ways of representing cloud in each model meant that the sensitivity to different aspects of the cloud varied between approaches. Therefore, a multiplicity of retrieval codes is considered to be an asset for the *Ariel* mission, since each has been written with different priorities in mind. Some codes include more complex chemistry than others (see e.g. Al-Refaie et al. 2022) and others have focused particularly on representation of cloud physics (see e.g. Ormel & Min 2019). Applying multiple retrieval codes to a single data set is rapidly becoming accepted as field best-practice as it allows these different strengths to be captured and also provides a useful cross-check for cases where solutions may be model dependent (see e.g. Kilpatrick et al. 2018; Lewis et al. 2020; Welbanks et al., in preparation). Regardless of any differences in parametrizations in these codes used to model exoplanet atmospheres and interpret observations, they all rely on various data inputs crucial for successful analyses of atmospheres, as will be discussed in this paper.

1.3 Paper structure

The intention of this community white paper is to ensure the data necessary to interpret observations from exoplanet atmosphere

¹<https://doi.org/10.5281/zenodo.7675743>

Table 2. Examples of typical atmospheric retrieval and modelling codes used by the exoplanetary atmosphere community.

Code	Reference	Link
ARCiS	Min et al. (2020)	https://www.exoclouds.com
ATMO	Tremblin et al. (2015)	https://www.erc-atmo.eu
Helios-r2	Kitzmann et al. (2020)	https://github.com/exoclime/Helios-r2
NASA Planetary Spectrum Generator (PSG)	Villanueva et al. (2018)	https://psg.gsfc.nasa.gov/
NEMESIS	Irwin et al. (2008)	https://nemesiscode.github.io/nemesis.html
NemesisPy	Yang, Irwin & Barstow (2023)	https://github.com/Jingxuan97/nemesispy/
petitRADTRANS	Mollière et al. (2019)	https://petitradtrans.readthedocs.io/en/latest/
PICASO	Batalha, Rooney & MacDonald (2021)	https://natashabatalha.github.io/picaso/
PLATON	Zhang et al. (2020)	https://github.com/ideasrule/platon
POSEIDON	MacDonald (2023)	https://github.com/MartianColonist/POSEIDON
Pyrat Bay	Cubillos & Blecic (2021)	https://pyratbay.readthedocs.io/en/latest/
TauREx3	Al-Refaie et al. (2021)	http://github.com/ucl-exoplanets/TauREx3_public

characterization missions such as *Ariel* are up to a standard required for successful analyses, and to allow comparability between analyses (for example, line lists which are complete and accurate at the relevant atmospheric temperatures for all expected species, refractive indices for all aerosol types expected in exoplanet atmospheres, etc). We provide a summary of the types of data typically used by atmospheric retrieval and modelling codes, and we identify potential weaknesses in the data and therefore motivate further research. For different data types, as described below, we will provide an overview of what data is currently: (1) available, (2) typically used, (3) being worked on, and (4) needed. Although the focus is on data required for characterizing exoplanet atmospheres related to the *Ariel* space mission, we also include some discussion on more general data usage in the field of astronomical spectroscopy, for example for broader wavelength regions. We focus on a number of different data types: molecular and atomic line lists (Section 2), molecular and atomic line shapes (Section 3), computed absorption cross-sections and opacities (Section 4), collision induced absorption (CIA) and other continuum data (Section 5), data for aerosols (Section 6), data for atmospheric chemistry models (Section 7), and data required for UV photodissociation or photoabsorption (Section 8). Needs for data standards, meta data, existing rules, and associated tools are discussed in Section 9. Current data bases providing such data for characterizing exoplanet atmospheres are reviewed across the paper in the relevant sections. Our conclusions can be found in Section 10.

The information associated with this paper is made available via the GitHub project.² The goal of this platform is to provide a go-to place both for the data-users and for the data-providers, for the users to inform others about their data needs and make requests, and for the data providers to link to the available or inform about their soon-to-be-available data (see Section 10.1).

2 MOLECULAR/ATOMIC LINE LISTS

Molecular and atomic line lists contain information about the frequency and strength of spectroscopic transitions, sometimes referred to as ‘lines,’ often accompanied by information on the associated initial and final energy states. When it comes to atomic and molecular line lists, the following factors are important: accuracy, which refers to the frequency or wavelength location of transition lines, and completeness, which refers to both spectral and temperature coverage; i.e. the number of transitions in the latter case. High-resolution spectra ($\frac{\lambda}{\Delta\lambda} \gtrsim 25\,000$) of exoplanets, typically measured

from ground-based instruments, require very accurate line positions to be known, usually over a shorter wavelength range than required for observations from low- to mid-resolution space-based telescopes such as *Ariel* and *JWST*. The cross-correlation technique used to analyse observed high-resolution spectra is an efficient tool to characterize exoplanet atmospheres, complementary to observations from space telescopes. It has resulted in numerous detections in exoplanetary atmospheres of hot-Jupiters of molecules and atoms, including CO, H₂O, TiO, HCN, CH₄, NH₃, C₂H₂, OH, VO, and CrH, as well as Ca, V, Cr, Fe, Ti, Mg, He, K, Na, and Li (Guillot et al. 2022; Gandhi et al. 2023).

To interpret the lower resolution ($\frac{\lambda}{\Delta\lambda} \lesssim 3000$) observations, it is particularly important for overall opacity to be provided by a line list, which requires the line list to be considered complete up to the temperature of the atmosphere being modelled. This metric of completeness is related to the number of spectral line transitions between energy levels which are provided by a line list. There will be transitions between the so-called hot bands, for example, which would not be present for a line list computed or based on laboratory measurements at room-temperature, but would be important for characterizing the atmospheres of exoplanets at high temperatures of around 1000–2000 K. It is well known that the choice of line list can have a huge impact in interpreting high-resolution spectroscopic observations (see, for example, Serindag et al. 2021; de Regt et al. 2022). Perhaps less intuitive, but the accuracy of line list, especially of the line positions, can be also critical for interpretation of lower resolution space-based observations, particularly at elevated temperatures >1000 K (see for example, Niraula et al. 2022). Therefore it is important that molecular opacities used in the main stream atmospheric retrieval packages are initially built at the highest resolution ($\frac{\lambda}{\Delta\lambda} \sim 100\,000$) before binning them down to the practical resolution ($\frac{\lambda}{\Delta\lambda} \sim 3000\text{--}15\,000$) (Chubb et al. 2020b). The aspects of completeness and accuracy for existing molecular line lists will be reviewed below.

2.1 State of the art – data availability

The main data bases which host molecular and atomic line lists are given in Table 3, with more details for a number of the molecular data bases found in the subsections below. Of these molecular data bases, HITRAN and GEISA provide highly accurate data with the main focus on terrestrial conditions, while the other listed data bases typically have more extended coverage, for example covering up to higher temperatures, usually >1000 K. Table 4 summarizes the wavelength and temperature coverage of molecular line lists from some of the main spectral data bases. An approximate temperature

²<https://github.com/Ariel-data>

Table 3. An overview of some line list data bases used by the (exo)planetary atmosphere community.

Database	Type of data	Reference	Link
CaSDa	Theoretical line lists up to high temperatures	Richard, Boudon & Rotger (2020), Richard et al. (2024)	https://vamdc.icb.cnrs.fr
ExoMol	Theoretical line lists up to high temperatures	Tennyson et al. (2020)	https://exomol.com
GEISA	Accurate line lists for terrestrial conditions	Jacquinot-Husson et al. (2016), Delahaye et al. (2021)	https://geisa.aeris-data.fr
HITEMP	Line lists up to high temperatures	Rothman et al. (2010)	https://hitran.org/hitemp
HITRAN	Accurate line lists for terrestrial conditions	Gordon et al. (2022)	https://hitran.org
Kurucz	Semi-empirical line lists up to high temperatures	Kurucz (1995)	http://kurucz.harvard.edu/molecules.html
MoLLIST	Laboratory line lists up to high temperatures	Bernath (2020)	https://bernath.uwaterloo.ca/molecularists.php
NASA Ames	Semi-empirical line lists up to high temperatures	e.g. Huang et al. (2023b)	http://huang.seti.org
NIST	Atomic line lists up to high temperatures	Kramida, Ralchenko & Reader (2023)	https://physics.nist.gov/PhysRefData/ASD/lines_form.html
S&MPO	Spectroscopy and Molecular Properties of Ozone	Tyuterev et al. (2021)	http://smpo.iao.ru
TheoReTs	Theoretical line lists up to high temperatures	Rey et al. (2016a)	https://theorets.tsu.ru
VALD3	Atomic line lists up to high temperatures	Ryabchikova et al. (2015)	http://vald.astro.uu.se

up to which the line list is considered complete, in terms of completeness of transition data at a given temperature, is given; either hot (≥ 1000 K) or else assumed to be roughly Earth-temperature (≤ 500 K). The latter usually applies to species in the HITRAN data base, which was originally designed for terrestrial atmosphere applications. We note that most molecules in the ExoMol data base are complete up to at least 3000 K, and hotter for some diatomic species. Some stable diatomic species such as H_2 and HD^+ are even considered complete up to 10 000 K. C_2H_4 is considered complete up to 700 K in both the TheoReTs (Rey et al. 2016b) and ExoMol (Mant et al. 2018) data bases; the same applies to HNO_3 (Pavlyuchko, Yurchenko & Tennyson 2015) in the ExoMol data base, which is also complete up to 700 K. An overview of some molecular and atomic data bases (as of 2022 September) can also be found in Rengel (2024); additional data bases not detailed here include that of JPL Molecular Spectroscopy³ and the Cologne data base for molecular spectroscopy (CDMS).⁴

Atomic line list data can be obtained from various sources such as the NIST⁵ (Kramida et al. 2021) and Kurucz⁶ (Kurucz 2017) data bases, and the Vienna atomic line data base (VALD3)⁷ (Ryabchikova et al. 2015). The appendix of Grimm et al. (2021) compares the opacities available from these three data bases. Atomic partition functions are included in the Kurucz and VALD3 data bases, and can also be computed by using various sources such as Irwin (1981). We note that while the Kurucz data base is well-used and considered accurate for atomic line lists, the majority of the Kurucz molecular line lists are more approximate than the other line list data bases described here.

Fig. 1 (left panel) shows a comparison for methane cross-sections computed at 296 K between MeCaSDa (Ba et al. 2013), TheoReTs (Rey et al. 2016a), the latest ExoMol MM line list (Yurchenko et al. 2024d), HITRAN2020 (Gordon et al. 2022), and HITEMP (Hargreaves et al. 2020). These data bases are detailed in the subsections below. It can be seen that all data bases are very similar at this temperature: the differences are mostly in the ‘transparency windows’ between the strongly absorbing polyads. Transitions in these regions are extremely weak and can be purely extrapolated or

even absent; thus, those regions should be considered with care. For example, HITRAN2020 lacks many weak lines, but they are present in HITEMP.

The situation is however very different at high temperatures. This is when the line list completeness or lack of it becomes especially evident and the choice of the line list to be used in retrievals can make a huge difference. In the right display of Fig. 1 we now compare cross-sections of methane generated for $T = 1500$ K. The low temperature line lists HITRAN2020 and MeCaSDa lack the essential absorption practically everywhere, with MeCaSDa being more complete at lower wavenumbers. The so-called ‘hot line’ lists of TheoReTs, ExoMol MM, and HITEMP all demonstrate a high level of completeness and generally agree with each across the entire IR region, but also show discrepancies in the near infrared (NIR). The latter are caused by the differences in the theoretical models and essentially reflect the lack of the underlying laboratory data used to constrain these models. Work on the analysis of the experimental spectra of methane in NIR is currently in progress.

2.1.1 Descriptions of molecular data bases

CaSDa: The CaSDa (Calculated Spectroscopic Data bases) data bases⁸ (see Richard et al. 2020, 2024) contain synthetic line lists resulting from fits of the effective Hamiltonian and dipole moment parameters using assigned experimental laboratory spectra. The models used for the calculations are based on the tensorial formalism developed in the Dijon group, as explained in Boudon et al. (2011). Currently, there are 10 CaSDa data bases for 10 different molecules, which amount to 39 isotopologues in total. A new data base, SiCaSDa, has been released very recently for three isotopologues of SiH_4 (a molecule already observed in the interstellar medium). All these data bases are listed in Table 5. For the present topic of exoplanetary spectroscopy, the most relevant ones are, of course, CH_4 , C_2H_4 , and GeH_4 , which are present in the atmospheres of the giant planets of the Solar System. CF_4 and SiF_4 are naturally present in Earth’s atmosphere due to volcanic emissions; SiF_4 has been suggested as a possible species on Io by Schaefer & Fegley Jr. (2005) and thus may be relevant in the case of potential volcanic exoplanets; CH_3Cl is present in comets (Hardy et al. 2023) and thus could be of interest for exo-comets (Janson et al. 2023). It was also suggested and explored as a biomarker in exoplanetary atmospheres

³<https://spec.jpl.nasa.gov/>

⁴<https://cdms.astro.uni-koeln.de/>

⁵https://physics.nist.gov/PhysRefData/ASD/lines_form.html

⁶<https://lweb.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html>;
<http://kurucz.harvard.edu/atoms.html>

⁷<http://vald.astro.uu.se>

⁸<https://vamdc.icb.cnrs.fr>

Table 4. An overview of the molecules, wavelength coverage, and temperature coverage for some of the major line lists available from listed data bases for the (exo)planetary atmosphere community. See the footnotes to the table for a key of data base and wavelength range. Line lists which are considered complete up to ≥ 1000 K are labelled with (H), and all others are generally assumed to be complete up to ~ 500 K. A few exceptions are noted in the text.

Molecule	λ range	Data base
AlCl	IR, Vis, UV	Ex(H),Ku(H),Mo(H)
AlF	IR, Vis, UV	Ex(H),Ku(H),Mo(H)
AlH	IR, Vis, UV	Ex(H),Ku(H),Mo(H)
AlO	IR, Vis, UV	Ex(H)
AsH ₃	IR	Ex
BeH	IR, Vis, UV	Ex(H)
C ₂	IR, Vis, UV	Ex(H),Ku(H)
C ₂ H ₂	IR	Ex(H),HI
C ₂ H ₄	IR	Ex,HI,Th, SDa
C ₂ H ₆	IR	HI
C ₂ N ₂	IR	HI
C ₄ H ₂	IR	HI
C ₃	IR	Ex(H)
CaF	IR, Vis, UV	Ex(H),Mo(H)
CaH	IR, Vis, UV	Ex(H),Mo(H)
CaO	IR, Vis, UV	Ex(H)
CaOH	IR,Vis	Ex(H)
CF ₄	IR	HI,SDa,Th
CH	IR, Vis, UV	Ex(H),Ku(H),Mo(H)
CH ⁺	IR, Vis, UV	Ex(H)
CH ₂	IR	Th(H)
CH ₃	IR	Ex(H),Th(H)
CH ₃ Br	IR	HI
CH ₃ Cl	IR	Ex(H),HI,SDa,Th
CH ₃ CN	IR	HI
CH ₃ F	IR	Ex,HI,Th
CH ₃ I	IR	HI
CH ₃ OH	IR	HI
CH ₄	IR, NIR	Ex(H),HI,HT(H),Th(H),SDa(H)
CIO	IR	HI
CIONO ₂	IR	HI
CN	IR, Vis, UV	Ex(H),Ku(H),Mo(H)
CO	IR	Ex(H),HI,HT(H)
CO ₂	IR	Am,Ex(H),HI,HT(H)
COCl ₂	IR	HI
COF ₂	IR	HI
CP	IR	Ex(H)
CrH	NIR	Ex(H),Mo(H)
CS	IR	Ex(H),HI
CS ₂	IR	Am,HI
FeH	NIR	Ex(H),Mo(H)
GeH ₄	IR	HI,SDa,Th
H ₂	IR, Vis, UV	Ex(H),HI(H)
H ₂ CO	IR	Ex(H),HI,Th
H ₂ CS	IR	Ex(H)
H ₂ O	IR	Ex(H),HI,HT(H)
H ₂ O ₂	IR	Ex(H),HI
H ₂ S	IR	Ex(H),HI
H ₃ ⁺	IR	Ex(H)
H ₃ O ⁺	IR	Ex(H)
HBO	IR	Ex(H)
HBr	IR	Ex(H),HI(H)
HCl	IR	Ex(H),HI(H)
HCN	IR	Ex(H),HI
HC ₃ N	IR	HI
HCOOH	IR	HI

Table 4 – continued

Molecule	λ range	Data base
HDO	IR	Ex(H),HI
HD ⁺	IR	Ex(H)
HeH ⁺	IR	Ex(H)
HF	IR	Ex(H),HI(H)
HI	IR	Ex(H),HI(H)
HNO ₃	IR	Ex,HI
HO ₂	IR	HI
HOBr	IR	HI
HOCl	IR	HI
KCl	IR	Ex(H)
KF		Ex(H),Mo(H)
KOH	IR	Ex(H)
LaO	Vis,UV	Ex(H),Mo(H)
LiCl	IR	Ex(H),Mo(H)
LiF	IR	Ex(H),Mo(H)
LiH	IR	Ex(H)
LiH ⁺	IR	Ex(H)
LiOH	IR	Ex(H)
MgF	IR, Vis, U	Ex(H),Mo(H)
MgH	IR, Vis, U	Ex(H),Mo(H)
MgO	IR, Vis, U	Ex(H)
N ₂	IR,UV	Ex(H),HI
N ₂ O	IR	Am,Ex(H),HI,HT(H)
NaF		Ex(H),Mo(H)
NaH	IR, Vis, UV	Ex(H)
NaCl	IR	Ex(H)
NaO	IR, Vis, UV	Ex(H)
NaOH	IR	Ex(H)
NF ₃	IR	HI,Th
NH	IR, Vis, U	Ex(H),Ku(H),Mo(H)
NH ₃	IR	Ex(H),HI
NO	IR, Vis, U	Ex(H),HI,HT(H)
NO ⁺	IR	HI
NO ₂	IR	HI,HT(H)
NS	IR	Ex(H)
O ₂	IR, Vis, UV	HI
O ₃	IR	HI,SM
OCS	IR	Am,Ex(H),HI
OH	IR, Vis, UV	Ex(H),HI,HT(H),Mo(H)
OH ⁺	IR, Vis, UV	Ex(H),Mo(H)
PH	IR, Vis, UV	Ex(H)
PH ₃	IR	Ex(H),HI,Th(H)
PN	IR	Ex(H)
PO	IR	Ex(H)
PS	IR	Ex(H)
S ₂	UV	HI
ScH	IR, Vis, UV	Ex(H)
SF ₆	IR	HI,SDa,Th
SH	IR, Vis, UV	Ex(H),Mo(H)
SiF ₄	IR	SDa
SiH	IR, Vis, UV	Ex(H),Ku(H)
SiH ₂	IR	Ex(H)
SiH ₄	IR	Ex(H),Th,SDa
SiO	IR, Vis, UV	Ex(H),Ku(H)
SiO ₂	IR	Ex(H)
SiH	IR, Vis, UV	Ex(H)
SiS	IR	Ex(H)
SO	IR, Vis, UV	Ex(H),HI
SO ₂	IR	Am,Ex(H),HI
SO ₃	IR	Ex(H),HI
TiH	Vis	Ex(H),Mo(H)
TiO	IR, Vis, UV	Ex(H),Mo(H),Ku(H)

Table 4 – *continued*

Molecule	λ range	Data base
VO	IR, Vis, UV	Ex(H)
YO	IR, Vis, UV	Ex(H)
ZnO	IR, Vis, UV	Ex(H)
ZrO	IR, Vis, UV	Ex(H)

Notes. Data bases: Am=NASA Ames; Ex=ExoMol; HI=HITRAN; HT=HITEMP; Mo=MoLLIST; Ku=Kurucz; SDa=TFSSiCaSDa, MeCaSDa, TFMeCaSDa, GeCaSDa, SiCaSDa, ECaSDa; SM=S&MPO; Th=TheoReTS; see Table 3.

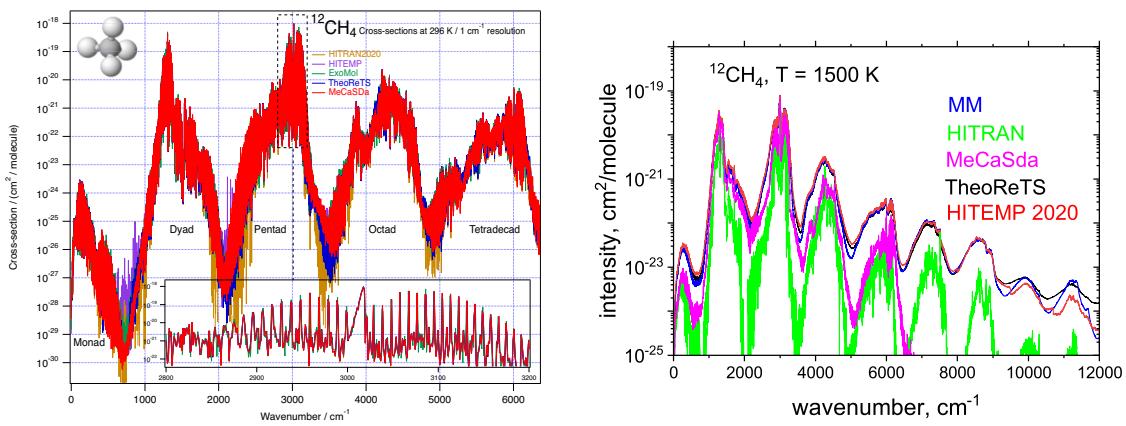
λ ranges: UV = 0.1–0.4 μm ; Vis = 0.4–0.8 μm ; IR \geq 0.8 μm .

(Seager, Bains & Hu 2013). In the near future, the intent is for new data (new bands and new isotopologues, like for instance CH_3D in MeCaSDa) to be added to these data bases (Richard et al. 2024), and for further ones to be developed, especially for some molecules of astrophysical interest, like $\text{C}_3\text{H}_6\text{O}_3$ [trioxane that may be relevant for comets, see Richard, Asselin & Boudon (2022)].

These data bases contain calculated line lists for all spectral regions of these molecules that could be assigned in experimental laboratory spectra and fitted line-by-line using effective Hamiltonians and dipole moments. The data bases contain extra information, such as energy levels with all quantum numbers and eigenvectors. When available, different isotopologues data are included in each data base. The given accuracy of line positions and intensities is equal to the standard deviation of the fit; extrapolation is limited to only a few rotational quantum number values outside the existing assignment range. The data output is in the 160-character HITRAN2004 format (Rothman et al. 2005). CaSDa use some specific notations for line assignments in the case of CH_3Cl and C_2H_4 since they are based on use of a tensorial formalism similar to that of CH_4 . It is also possible to compute absorption cross-sections.

ExoMol⁹ is a provider of the molecular and since 2023 also atomic data necessary for modelling spectroscopy of exoplanets (Tennyson et al. 2024b). The main data products are line lists, with the emphasis on the molecules important for exoplanetary and stellar atmospheres, but also for spectroscopy of planets, comets as well as industrial applications (see Tennyson & Yurchenko 2021). As of today, the ExoMol data base contains line lists for 92 molecules and 245 isotopologues, see Table 6 for the current snapshot of the molecular line lists available in ExoMol. Up to the ExoMol 2020 release (Tennyson et al. 2020), the emphasis had been on the completeness of the data in terms of the temperature and wavelength coverage especially aimed at lower to medium resolution exoplanetary studies, usually involving transit spectroscopy, see Table 4. ExoMol line lists are generally constructed to be accurate for resolving power $R \leq 10\,000$ (Tennyson et al. 2024b), i.e. appropriate for the *Ariel* and *JWST* missions. Higher temperatures applications with the atmospheres of hot Jupiters studied by *HST* instruments being a typical application meant that the line lists had an emphasis on completeness (Yurchenko et al. 2014). Since 2020, the focus of the ExoMol data base has shifted to high resolution (HR) applications, i.e. ground-based HR cross-correlation applications. The ExoMol line lists are currently being upgraded to the quality of the HITRAN line lists, where the underlying high-resolution data are available. Other conceptual shifts in the ExoMol data structure are the introduction of uncertainties for the line positions to enable the data users to select the lines according with their application needs; provision of UV photoab-

sorption and photodissociation cross-sections (Pezzella, Tennyson & Yurchenko 2022; Tennyson et al. 2023) (see Section 8); broadening due to pre-dissociation (Tennyson et al. 2023; Yurchenko et al. 2024c).


The ExoMol line lists are written as bzip2-compressed ascii files using the two file structure: a States file (.states) and a Transition file (.trans). The States file provides a full description of the (rovibronic) states, including the energy (cm^{-1}), total degeneracy, the total angular momentum, energy uncertainty (cm^{-1}), lifetimes, Lande-g factors as well as the corresponding quantum numbers, with each entry identified by an integer number (State ID). The Transition files provide the Einstein coefficients in the following compact form: $i \ j \ A_{ij}$, where i and j are the upper and lower state IDs, respectively, and A_{ij} is a corresponding Einstein A coefficient (s^{-1}). The quantum numbers in the States file, when available, correspond to the standard spectroscopic convention for a given system, but can also include alternative conventions. This is strongly dependent on how the line lists have been produced.

As part of the ExoMol services, a number of useful tools are provided, including an online cross-sections app, some efficient programs ExoCross and PyExoCross to turn huge line lists into compact temperature and pressure-dependent cross-sections (Yurchenko, Al-Refaie & Tennyson 2018d; Zhang, Tennyson & Yurchenko 2024), molecular radiative lifetimes (Owens et al. 2023), molecular specific heats (Wang et al. 2023a), and molecular opacities in four different formats appropriate for a variety of atmospheric retrieval codes (Chubb et al. 2020b); details of the ExoMolOP opacity data base are given in Section 4. A detailed Atlas of molecular spectra computed using the ExoMol line lists can be found in Tennyson & Yurchenko (2018), see Fig. 2 as an example, where the ExoAmes (Underwood et al. 2016a) cross-sections of SO_2 are shown.

The majority of the line lists in the ExoMol data base have been produced by the ExoMol group using a combination of quantum mechanical calculations based on high-level spectroscopic models (i.e. potential energy surfaces, spin-orbit and other coupling etc.), tuned by fitting to the experimental data and the so-called post-production MARVELisation (Furtenbacher, Császár & Tennyson 2007), where some of the computed energies are replaced by experimental values (see Section 2.1.4). Apart from these ExoMol line lists (covering some 70 molecules), the ExoMol data base also hosts line lists from other data providers, including a large number of diatomics (Wang, Tennyson & Yurchenko 2020a) from the MoLLIST (Molecular Line Lists, Intensities, and Spectra) project (Bernath 2020), some of the high-temperature species from HITRAN (HF, HCl, HBr) (Li et al. 2013), and CO from Li et al. (2015). The HITEMP line list for NO (Hargreaves et al. 2019) is based on the ExoMol NOname line list (Wong et al. 2017), combined with other data.

HITRAN and HITEMP: The HITRAN molecular spectroscopic data base has been a go-to source of molecular data for 50 yr (Rothman 2021). HITRAN, an acronym of high-resolution transmission, was primarily established to model the radiative transfer through the Earth's atmosphere and consequently included line-by-line parameters to model the dominant terrestrial absorbers. Over the years, as observations, experiments, and analytical techniques have improved, the HITRAN data base has been regularly updated and expanded to accommodate state-of-the-art molecular parameters from the microwave through to the near UV spectral range. Papers describing quadrennial editions of the data base typically receive thousands of citations. HITRAN2020 (Gordon et al. 2022) – the most recent edition of the data base – features a compilation of line-by-line parameters, both experimentally derived and calculated,

⁹www.exomol.com

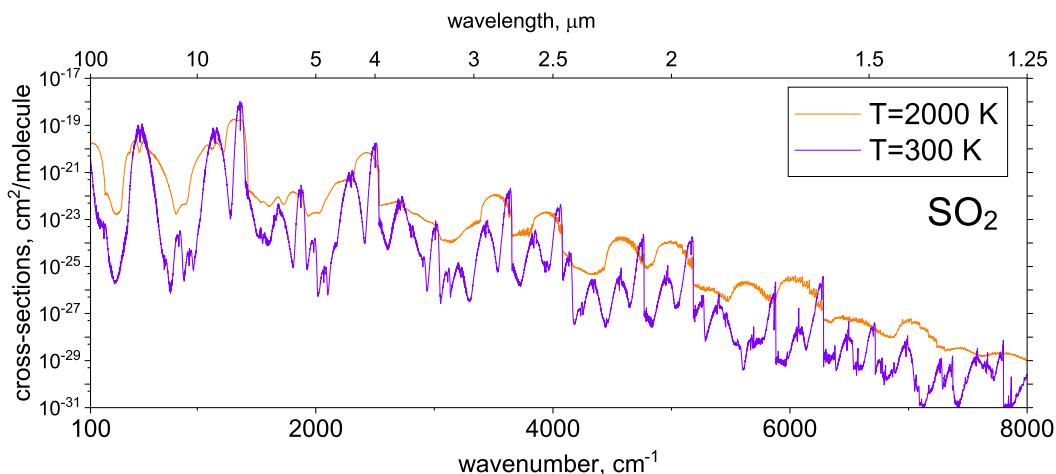
Figure 1. Comparison of $^{12}\text{CH}_4$ cross-sections at 296 K (left) and 1500 K (right) in the far and mid-infrared regions for different data bases: MeCaSDa (Richard et al. 2020), TheoReTs (Rey et al. 2016a), the ExoMol MM line list (Yurchenko et al. 2024d), HITRAN2020 (Gordon et al. 2022), and HITEMP (Hargreaves et al. 2020).

Table 5. Calculated molecular absorption lines in the CaSDa data bases.

HITRAN ID	Molecule	DB name	Isotopologues	Total nb. of lines	Relevant for Ariel
06	CH ₄	MeCaSDa	3	12 988 898	*
24	CH ₃ Cl	ChMeCaSDa	2	12 152	
30	SF ₆	SHeCaSDa	4	491 500	
38	C ₂ H ₄	ECaSDa	1	96 397	*
42	CF ₄	TFMeCaSDa	1	258 208	*
52	GeH ₄	GeCaSDa	5	60 878	*
–	RuO ₄	RuCaSDa	9	30 205	
–	SiF ₄	TFSiCaSDa	3	210 401	*
–	UF ₆	UHeCaSDa	8	110 129	
–	SiH ₄	SiCaSDa	3	20 090	*

for 55 molecules and is freely available from HITRANonline.¹⁰ table 1 of Gordon et al. (2022) provides a summary of the spectral coverage and the number of lines included in HITRAN for each isotopologue of every molecule. Each transition in HITRAN includes the line position, intensity, lower state energy, line shape parameters, and assignment information that are necessary for calculating the absorption of a transition at a given temperature and concentration. HITRAN line-by-line parameters are provided at a reference temperature of 296 K with intensities that account for the typical natural abundance on Earth. Alongside Voigt line shape parameters for air- and self-broadening (i.e. the broadening due to the terrestrial atmosphere and pure gas, respectively), recent editions of HITRAN have also accommodated parameters for high-level line shapes and broadening parameters that are applicable to planetary atmospheres other than Earth. This includes atmospheres dominated by H₂/He, CO₂ (Wilzewski et al. 2016; Tan et al. 2022), and H₂O (Tan et al. 2019). A summary of the additional broadening available via the HITRAN data base is provided in Table 7.

In addition to line-by-line parameters, HITRAN also provides experimental absorption cross-sections for over 300 molecules for which no reliable quantum mechanical models exist (Kochanov et al. 2019) (see section 2.1.3.1), collision-induced absorption data for a variety of collisional complexes (Karman et al. 2019) (see Section 5), aerosol properties (see Section 6), and water vapour continuum data (Mlawer et al. 2012) (see Section 5). HITRAN also provides


auxiliary data necessary for carrying out calculations of spectra at different thermodynamic conditions, including total internal partition sums (Gamache et al. 2017, 2021). The HITRAN Application Programming Interface, HAPI (Kochanov et al. 2016), allows one to efficiently download HITRAN data and carry out calculations of spectral absorption, emission, and transmission. HITRAN provides line lists for a small number of species which are considered complete up to high temperatures of around 4000–5000 K: HF, HCl, HBr, HI, and H₂ (Li et al. 2013).

HITEMP (Rothman et al. 2010) is in principle updated alongside the HITRAN data base and is specifically aimed at modelling high-temperature ($\gtrsim 1000$ K) environments where HITRAN data cannot be reliably applied. This includes the atmospheres of stars, brown dwarfs, and planets at elevated temperatures, such as hot Jupiters, hot super-Earths, or Venus. At the moment HITEMP provides line lists for eight molecules (H₂O, CO₂, N₂O, CO, CH₄, NO, NO₂, OH) and is consistent with HITRAN where possible, but typically includes a substantial proportion of calculated ab initio or semi-empirical parameters. These additional lines account for hot bands, and other transitions that are negligible (i.e. extremely weak) at terrestrial temperatures and therefore not included in the HITRAN line list. While the number of lines required for each molecule can reach billions, one goal of HITEMP has been to remain practical to use in line-by-line radiative transfer calculations. Therefore, the underlying ab initio line lists are analysed and filtered to reduce the number of lines necessary for each molecule, as demonstrated for the addition of CH₄ (Hargreaves et al. 2020) to HITEMP.

¹⁰www.hitran.org

Table 6. An overview of the line lists provided by ExoMol, www.exomol.com

Molecule	Reference	Molecule	Reference	Molecule	Reference
AlCl	Yurchenko et al. (2023)	H ₂ CS	Mellor et al. (2022)	NH ₃	Coles, Yurchenko & Tennyson (2019b)
AlF	Yousefi & Bernath (2018)	H ₃ ⁺	Bowesman et al. (2023)	¹⁵ NH ₃	Yurchenko et al. (2024e)
AlH	Yurchenko et al. (2024c)	H ₃ O ⁺	Yurchenko et al. (2020b)	NO	Wong et al. (2017)
AlO	Patrascu, Tennyson & Yurchenko (2015)	HBO	Li, Qin & Liu (2024)	NO	Qu, Yurchenko & Tennyson (2021)
AsH ₃	Coles et al. (2019a)	HBr	Coxon & Hajigeorgiou (2015)	NS	Yurchenko et al. (2018b)
BeH	Darby-Lewis et al. (2018)	HCCH	Chubb, Tennyson & Yurchenko (2020a)	OCS	Owens et al. (2024b)
C ₂	Yurchenko et al. (2018c)	HCl	Li et al. (2013)	OH	Brooke et al. (2016)
C ₂	Brooke et al. (2013)	HCN/HNC	Barber et al. (2014)	OH ⁺	Hodges, Bittner & Bernath (2018)
C ₂ H ₄	Mant et al. (2018)	HD	Amaral et al. (2019)	P ₂ H ₂	Owens & Yurchenko (2019)
C ₃	Lynas-Gray et al. (2024)	HD ⁺	Amaral et al. (2019)	PF ₃	Mant et al. (2019)
CaF	Hou & Bernath (2018)	HDO	Mizus et al. (in preparation)	PH	Langley, Yurchenko & Tennyson (2019)
CaH	Yadin et al. (2012)	HeH ⁺	Amaral et al. (2019)	PH ₃	Sousa-Silva et al. (2015)
CaH	Owens et al. (2022a)	HF	Coxon & Hajigeorgiou (2015)	PN	Semenov et al. (in preparation)
CaO	Yurchenko et al. (2016)	HNO ₃	Pavlyuchko et al. (2015)	PO	Prajapat et al. (2017)
CaOH	Owens et al. (2022a)	HS	Yurchenko et al. (2018b)	PS	Prajapat et al. (2017)
CH	Masseron et al. (2014)	KCl	Barton et al. (2014)	ScH	Lodi, Yurchenko & Tennyson (2015)
CH ₃	Adam et al. (2019)	KF	Frohman, Bernath & Brooke (2016)	SH	Gorman, Yurchenko & Tennyson (2019)
CH ₃ Cl	Owens et al. (2018b)	KOH	Owens, Tennyson & Yurchenko (2021)	SiH	Yurchenko et al. (2018a)
CH ₃ F	Owens et al. (2018a)	LaO	Bernath, Dodangodage & Liévin (2022)	SiH ₂	Clark et al. (2020)
CH ₄	Yurchenko & Tennyson (2014)	LiCl	Bittner & Bernath (2018)	SiH ₄	Owens et al. (2017)
CH ⁺	Pearce, Yurchenko & Tennyson (2024)	LiF	Bittner & Bernath (2018)	SiN	Owens et al. (2022a)
CH ⁴	Kefala et al. (2024)	LiH	Coppola, Lodi & Tennyson (2011)	SiO	Yurchenko et al. (2022)
CN	Syme & McKemmish (2021)	LiH ⁺	Coppola et al. (2011)	SiO	Kurucz (2011)
CO	Li et al. (2015)	LiOH	Owens et al. (2024a)	SiO ₂	Owens et al. (2020)
CO ₂	Yurchenko et al. (2020a)	MgF	Hou & Bernath (2017)	SiS	Upadhyay et al. (2018)
CP	Ram et al. (2014)	MgH	Owens et al. (2022a)	SO	Brady et al. (2024)
CrH	Chowdhury et al. (2006)	MgH	Gharib-Nezhad, Shayesteh & Bernath (2013)	SO ₂	Underwood et al. (2016a)
CS	Paulose et al. (2015)	MgO	Li, Tennyson & Yurchenko (2019)	SO ₃	Underwood et al. (2016b)
FeH	Wende et al. (2010)	N ₂	Western et al. (2018)	TiH	Burrows et al. (2005)
H ₂	Roueff et al. (2019)	N ₂ O	Yurchenko, Mellor & Tennyson (2024a)	TiO	McKemmish et al. (2019)
H ₂ ¹⁶ O	Polyansky et al. (2018)	NaCl	Barton et al. (2014)	VO	McKemmish, Yurchenko & Tennyson (2016)
H ₂ ^{17,18} O	Polyansky et al. (2017)	NaF	Frohman et al. (2016)	VO	Bowesman et al. (2024)
H ₂ CO	Al-Refaie et al. (2015)	NaH	Rivlin et al. (2015)	YO	Yurchenko et al. (2024b)
H ₂ O ₂	Al-Refaie et al. (2016)	NaO	Mitev et al. (2022)	YO	Yurchenko et al. (2019)
H ₂ S	Azzam et al. (2016)	NaOH	Owens et al. (2021)	ZrO	Perri, Taher & McKemmish (2023)
H ₃ ⁺	Mizus et al. (2017)	NH	Perri & McKemmish (2024)		

Figure 2. ExoMol Spectral Atlas (Tennyson & Yurchenko 2018): Cross-sections of SO₂ computed with the ExoMol line ExoAmes (Underwood et al. 2016a).

Table 7. Reference sources for Voigt line broadening parameters available in HITRAN, in addition to air- and self-broadening which are provided for every line. W16 refers to Wilzewski et al. (2016), T19 to Tan et al. (2019), T22 to Tan et al. (2022), D18 to Dudaryonok & Lavrentieva (2018), L20 to Lavrentieva & Dudaryonok (2020), and self refers to self-broadening parameters (see Gordon et al. 2022).

HITRAN ID	Molecule	Broadening parameters			
		H ₂	He	H ₂ O	CO ₂
1	H ₂ O	—	—	Self	—
2	CO ₂	T22	T22	T19	T22
4	N ₂ O	—	T22	T19	T22
5	CO	T22	T22	T19	T22
6	CH ₄	—	—	T19	—
7	O ₂	—	—	T19	—
9	SO ₂	W16	W16	—	D18
11	NH ₃	W16	W16	T19	W16
13	OH	T22	T22	—	—
14	HF	W16	W16	—	W16
15	HCl	W16	W16	—	W16
19	OCS	T22	T22	—	L20
20	H ₂ CO	T22	T22	—	T22
23	HCN	T22	T22	—	—
26	C ₂ H ₂	W16	W16	—	W16
28	PH ₃	T22	T22	—	—
31	H ₂ S	T22	T22	T19	T22
45	H ₂	Self	—	—	—
52	GeH ₄	T22	—	—	—

In summary, HITRAN and HITEMP both provide essential input parameters for many radiative transfer codes. These data are used for a variety of applications, including the modelling of exoplanet atmospheres at high-resolution.

NASA Ames data base: The data base from NASA Ames uses the ‘Best Theory+Reliable High-Resolution Experiment (BTRHE)’ strategy (Huang, Schwenke & Lee 2021) to provide accurate and complete line lists for species such as SO₂ (5 isotopologues up to 500 K) (Huang, Schwenke & Lee 2015, 2016), CO₂ (up to 3000 K) (Huang et al. 2023b), NH₃ (Huang et al. 2022b), N₂O (Huang, Schwenke & Lee 2023a), OCS, CS₂, and their isotopologues. The most recent NASA Ames releases include hot line lists are for the four most abundant isotopologues of CO₂ (¹²C¹⁶O₂, ¹³C¹⁶O₂, ¹⁶O¹²C¹⁸O, and ¹⁶O¹²C¹⁷O) (Huang et al. 2022a) and extensive room temperature line lists for N₂O with its 12 isotopologues (Huang et al. 2023a). The ExoMol SO₂ line list (Underwood et al. 2016a) was also produced jointly with NASA Ames. Some of the earlier NASA Ames line lists were formatted using the HITRAN-like line-by-line ascii format, while the more recent line lists are provided in the ExoMol-like format with two parts, states and transitions. Although these are ascii files, for transitions (Einstein coefficients and states IDs), NASA Ames uses a simple compacting scheme based on representing real numbers as integers. The line lists can be accessed online.¹¹

TheoReTS: Precise knowledge of high-energy molecular states and intensities of rovibrational transitions is essential for the modelling of various planetary atmospheres as well as for the understanding of spectral properties, even in extreme dynamical and temperature conditions. This clearly demonstrates the need of having consistent line-by-line spectroscopic data bases, with a large coverage in terms of both wavelengths and temperatures. Because of

their completeness, variational calculations are well designed for the modelling of planetary atmospheres, unlike traditional spectroscopic effective models for which wavenumber extrapolation beyond the range of observed data turns out very limited. Within that context, the TheoReTS (Theoretical Reims-Tomsk Spectral data) project (Rey et al. 2016a) – whose philosophy closely follows that of ExoMol (Tennyson et al. 2020) – was born in 2016.¹² For the construction of accurate variationally computed molecular line lists allowing a complete description of the main spectral features, highly optimized numerical methods and symmetry tools for solving the nuclear-motion equation as well as high-level ab initio calculations are required.

The TheoReTS line lists are simple ascii files with three columns: v_{ij} , S_{ij} , E_{low} . For ease of use, quantum numbers and symmetry labels can be provided upon request using a HITRAN-like format. In addition, variational energy levels can be also replaced by rotation-vibration levels computed from empirical effective Hamiltonians whose parameters are fitted to experimental data, as in the case of methane (Rey et al. 2018). This ensures almost the same quality as HITRAN2020 (Gordon et al. 2022) for the line positions of cold bands while many new hot bands can be accurately predicted. For modelling hot exoplanets and brown dwarfs, a methane line list for the HITEMP (Hargreaves et al. 2020) spectroscopic data base was constructed using the TheoReTS predictions (Rey, Nikitin & Tyuterev 2017; Wong et al. 2019). Moreover, in order to facilitate the manipulation of the so-called quasi-continuum formed by billions of lines (e.g. due to line lists of heavy molecules at high-temperatures), a set of super-lines can be generated at different temperatures to drastically reduce the total number of lines by several orders of magnitude (Rey et al. 2016a).

In its current form, TheoReTS contains line lists for nine molecules (CH₄, PH₃, SF₆, C₂H₄, CF₄, GeH₄, SiH₄, CH₃F, NF₃) and 28 isotopologues. New line lists will be released in 2024, either by improving the existing ones or by including new ones for both *semirigid* and *non-rigid molecules* (Rey et al. 2023). Among the next candidates of primary importance – potentially relevant for the study of exoplanetary atmospheres are CH₂, CH₃, NH₃, H₂NN, H₂NCN, CH₃Cl, C₃H₄, H₂O₂, CCl₄, CH₃CN, or C₂H₆ that will be gradually uploaded in TheoReTS. The construction of comprehensive line lists is now being revisited using a novel methodology developed in Reims to derive ab initio effective models (Rey 2022), combining the small dimensionality of the spectroscopic polyad models and the completeness of the variational calculation. Fine-tuning of the ab initio-based spectroscopic parameters allows matches to observed data to be made without much computational effort, unlike a refinement procedure of the PES which is generally more demanding. Effective parameters plan to be shared in the upgraded version of TheoReTS.

2.1.2 Laboratory spectroscopy measurements

As might be expected, the vast majority of laboratory studies have been undertaken with terrestrial applications in mind, and these studies form the basis for many of the line lists discussed throughout this section. Laboratory studies not only provide empirical measurements of critical parameters such as line positions, intensities, broadening coefficients, and temperature dependencies (e.g. see Gordon et al. 2022, which overviews experimental works included for HITRAN2020), but they are also used to refine and develop theoretical models, they are essential for constraining calculated parameters,

¹¹<https://huang.seti.org/> and <https://data.nas.nasa.gov/ai3000k>

¹²<https://theorets.tsu.ru/> and <https://theorets.univ-reims.fr/>

and they are often used directly as is the case for absorption cross-section measurements (see Section 2.1.3). However, the experimental conditions of many studies, such as pressure and temperature, are not always directly applicable to non-terrestrial planetary environments, which means spectroscopic parameters derived from them have limitations when applied elsewhere. Within our Solar System there are atmospheric temperatures, pressures, and constituents that are beyond those encountered in the Earth's atmosphere. Moreover, the variety of exoplanet atmospheres that are already accessible to transit measurements, via *JWST* observations or high-resolution ground-based observations (and those that will be observed by the near-future *Ariel* mission), mean that the experimental requirements far exceed atmospheric environments previously studied and necessitate a range of planetary-applicable laboratory measurements to better model these observations (Fortney et al. 2019).

The value of experimental spectroscopy for characterizing planetary atmospheres cannot be overstated. However, this section is not meant to be a comprehensive overview of the history of spectroscopic works, but instead aims to provide a summary of recent experimental measurements that highlight key techniques, spectroscopic parameters, and molecules currently being investigated for planetary applications.

Experimental data for Solar System planets: Experimental data can support both the study of our Solar System bodies and contribute significantly to the understanding of exoplanet spectroscopy.

The advent of the ESA Venus Express mission to Venus and the NASA/Juno and ESA/JUICE missions to the Jovian system pushed the interest on new laboratory experiments to study the properties of CO₂ at high temperatures and pressures, to simulate the Venusian case, and H₂ and H₂+He mixtures as representative of collision induced absorption (CIA) in Jupiter's atmosphere. For example, two different experimental apparatus have been used to obtain the spectra representative of Venus (Stefani et al. 2013) and Jupiter (Snels et al. 2021), due to the different pressure and temperature values covered. In the case of Venus, CO₂ spectra were obtained in the 1–10 μm spectral band (Stefani et al. 2022a, b), exploring temperature and pressure values according to a real Venus vertical profile (Seiff et al. 1985). An example is shown in Fig. 3. For the Jupiter case, CIA coefficients of H₂ and H₂-He were measured (see Section 5). Furthermore, empirical absorption cross-sections for key absorption species observed in the atmospheres of Gas Giant planets have traditionally been implemented in retrievals when line lists were incomplete, as done for CH₄ in the visible (Karkoschka 1994). Moreover, numerous experimental measurements of broadening parameters applicable to planetary atmospheres (e.g. H₂, He, CO₂, and H₂O) and their temperature dependencies have been combined into functional forms by Wilzewski et al. (2016) and Tan et al. (2022) to populate these parameters in spectroscopic data bases.

Titan, with its complex atmosphere, has motivated data-focused experiments for decades (e.g. McKellar 1989; de Vanssay et al. 1995; Curtis et al. 2008; Sung et al. 2013; Hewett et al. 2020), valuable not just for the analysis of the Saturnine moon but for studies of the early Earth and its exoplanetary analogues. These studies reflect the need for spectroscopic data of hydrocarbons and other organic molecules in nitrogen-rich environments and have already significantly improved our understanding of the opacities of CH₃D and C₂H₆ for instance (Hörst, Vuitton & Yelle 2008; Vuitton et al. 2019; He et al. 2022b).

High-temperature experimental measurements: Experimental measurements are relatively sparse outside of the terrestrial temperature range, but there have been some efforts to address this for planetary applications in recent years. In particular, we focus on the

spectral region covered by *Ariel* at elevated temperatures, due to the atmospheric temperatures found in the proposed exoplanet target lists (Edwards et al. 2019b; Edwards & Tinetti 2022). Laboratory studies at high temperatures consistent with hot planetary atmospheres (i.e. above room temperatures and typically up to \sim 1000–2000 K), using a variety of experimental techniques, have provided crucial data for exoplanetary studies. However, acquiring spectra at high temperatures is challenging, primarily because of the physical properties of laboratory equipment, but also due to decomposition of the sample molecule, which can lead to reaction products contaminating observations.

Many existing experimental line lists have been built upon spectra recorded with Fourier transform spectrometers (FTS) and typically span the infrared region. These measurements provide relatively wide spectral coverage (e.g. multiple vibrational modes) at high spectral resolution ($\lesssim 0.01 \text{ cm}^{-1}$). It is common to couple Fourier transform spectrometers with cells capable of reaching elevated temperatures. Analyses from these measurements have provided new insight for line positions (Hargreaves, Li & Bernath 2012, for NH₃), intensities (Georges et al. 2019, for CH₄), line shape parameters (Delahaye et al. 2016, for H₂O), and absorption cross-sections (Beale, Hargreaves & Bernath 2016, for C₃H₈) sufficient for accurate retrievals of planetary conditions. Complementary to FTS, cavity ring down spectrometers (CRDS) are capable of providing similar frequency accuracy to FTS, but the increased effective path provided by the cavity results in much higher sensitivity for weak transitions. This high sensitivity makes CRDS well-suited to weaker 'window' regions of molecular absorption that are difficult to study with other methods. For example, line parameters obtained for weak CH₄ transitions in the NIR (Campargue et al. 2023) can be included in spectroscopic data bases directly or used to refine line positions in future iterations of ab initio line lists. Moreover, CRDS measurements enable constraints to be applied to the water vapour continuum (Koroleva et al. 2023a), which is essential for accounting for the total water absorption through long path lengths (see Section 5). Laser-based techniques, for example, have been able to probe limited spectral regions at even higher resolutions comparable with millimetre rotational studies (e.g. $\Delta\nu < 1.0 \times 10^{-6} \text{ cm}^{-1}$). More recently, frequency combs have enabled highly accurate spectroscopic studies to be acquired over moderately large spectral regions, which can now include whole vibrational bands. For example, comb spectroscopy has been used for measurements of high-temperature spectra of H₂O (Schroeder et al. 2017; Rutkowski et al. 2018), CH₄ (Malarich et al. 2021), and CO₂ (Cole et al. 2023) in the 6250–7570 cm^{-1} range. Water spectra measured in a pre-mixed methane/air flat flame (Rutkowski et al. 2018) were assigned using the MARVELised POKAZATEL line list, while H₂O (Schroeder et al. 2017) and CH₄ (Malarich et al. 2021) spectra measured in a range of temperatures and sub-atmospheric pressures were used to assess the accuracy of current editions of HITRAN and HIITEMP data bases. The CO₂ spectra were measured at pressures up to 25 bar to test and improve line mixing models and their temperature dependence (Cole et al. 2023). Another development relevant for high-temperature applications is the optical-optical double resonance spectroscopy with continuous-wave pump and comb probe, which allows measurement and assignment of hot-band transitions with sub-Doppler resolution without the need to heat the sample (Foltynowicz et al. 2021b; Silva de Oliveira et al. 2024). This technique has so far been used to measure and assign hot band transitions in the $3\nu_3 \leftarrow \nu_3$ range of CH₄ (Foltynowicz et al. 2021a; Oliveira et al. 2024), finding good agreement with the TheoReTS predictions (Rey, Nikitin & Tyuterev 2014b; Hargreaves et al. 2020). See Section 2.1.2 for a detailed

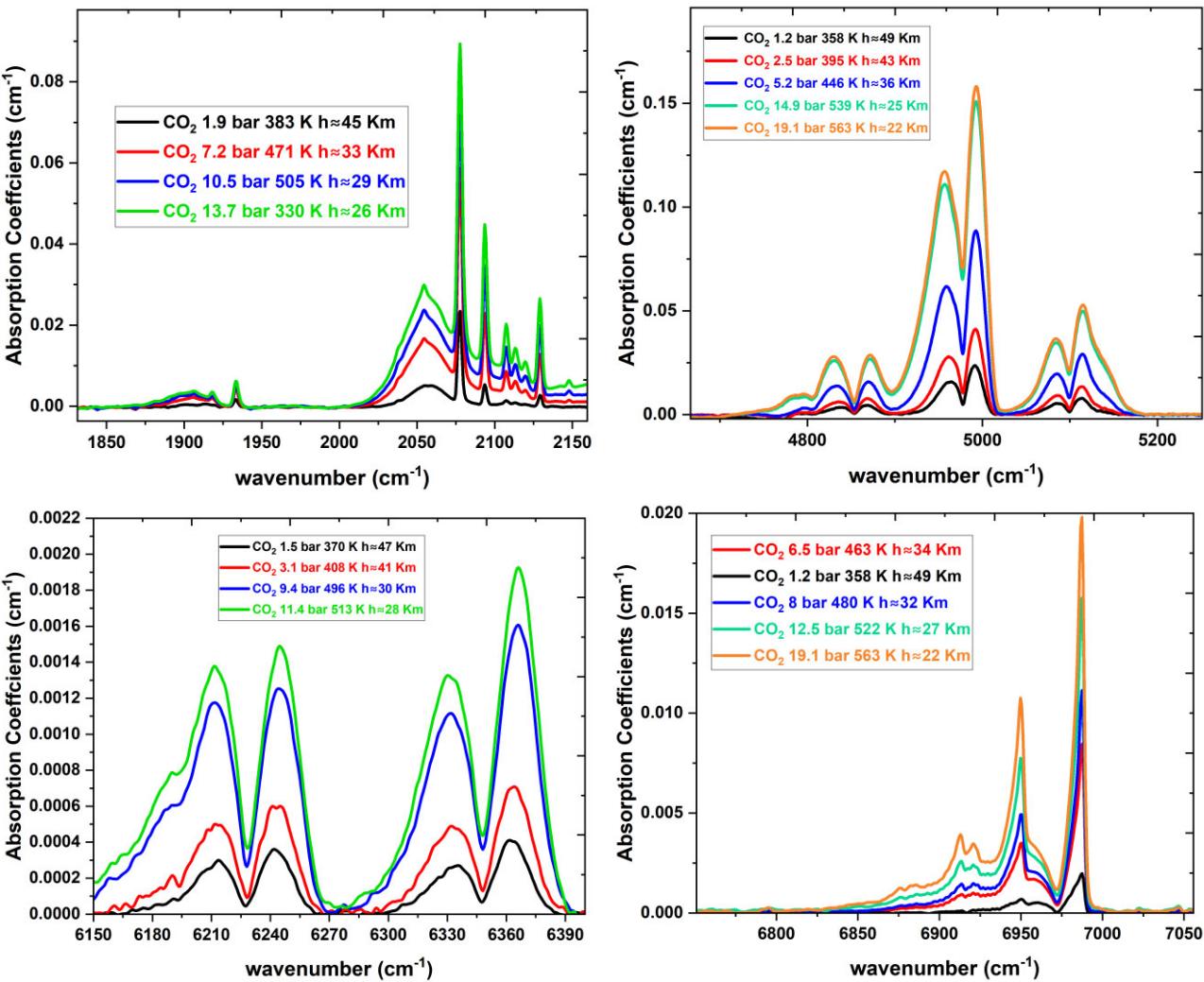


Figure 3. Measured spectra of CO_2 at different temperatures and pressures relevant to the atmosphere of Venus, from Stefani et al. (2013).

spotlight overview of frequency comb spectroscopy for planetary applications.

In addition to providing measurements of line positions, intensities, and line shape parameters, broad-band FTS measurements of high-temperature gases enclosed in a heated tube cell (up to ~ 1500 K) can also provide essential testing of the accuracy of current line lists available in the literature, such as for the CO_2 line list in HITEMP (Bharadwaj & Modest 2007; Alberti et al. 2015). Such measurements have also provided valuable absorption cross-sections that can be used for atmospheric characterization when line lists have been incomplete for planetary studies (e.g. Nassar & Bernath 2003, for CH_4). In addition, spectra obtained from high-enthalpy sources (Georges et al. 2019) and oxyacetylene torches with temperatures up to 3000 K (Coheur et al. 2005), or time-resolved spectroscopy in glow discharges (Pastorek et al. 2022, and references therein), can be used to investigate combustion environments and non-local thermodynamic equilibrium (non-LTE) conditions (Dudás et al. 2023). Spectroscopic parameters obtained from these studies can then be used to constrain theoretical line lists, improving the accuracy throughout. While FTS measurements combined with tube furnaces apparatus have formed the bulk of many studies at high temperatures, often laser based analyses are used in high-temperature

remote sensing applications of combustion processes (Tancin et al. 2020). Combining laser spectroscopy techniques with shock-tube apparatus enables sensitive measurements at higher temperatures and pressures (Ding, Strand & Hanson 2019; Strand et al. 2019; Tancin & Goldenstein 2021; Chakraborty et al. 2024), which can be difficult to reach with tube furnaces. In addition, these techniques can also be combined with frequency combs to provide accurate measurements at high-temperature that cover broad spectral ranges, such as recent investigations for the line-positions of CH_4 (Pinkowski et al. 2021; Malarich et al. 2021).

Spectroscopic studies of atomic transitions and diatomic molecules at high temperatures have historically taken advantage of the Sun's photosphere (~ 5800 K), providing accurate line positions. For example, telluric-free, high-resolution Solar spectra recorded from orbiting satellites have been used to extend laboratory studies, as done for CH (Melen et al. 1989; Colin & Bernath 2010), NH (Ram & Bernath 2010), and OH (Melen et al. 1995; Bernath & Colin 2009; Civiš et al. 2023); similarly Barton, Yurchenko & Tennyson (2013) used extensive sunspot spectra due to Campbell et al. (1995) to help create an extensive SiO line list. This can provide key measurements of spectral lines positions for molecules that are difficult to measure in the laboratory. A recent review of middle-to-near IR emission spectra

of four simple astrophysically relevant molecular radicals, OH, NH, CN, and CH, was given by Civiš et al. (2023). In addition, key diatomic species that characterize spectra of brown dwarfs are also expected to be present in exoplanet atmospheres. These molecules are challenging for theoretical calculations, and measurements of line positions and intensities are essential for improving models. Semi-empirical line lists have been developed for these molecules by analysing archived high-temperature, high resolution spectra, such as carried out for FeH (Hargreaves et al. 2010), and MgH (Shayesteh et al. 2007; Gharib-Nezhad et al. 2013; Hinkle et al. 2013; Owens et al. 2022a), and TiO (Cameron & Bernath 2022). These semi-empirical works have often been directly implemented into brown dwarf (Bailey & Kedziora-Chudczer 2012) and exoplanet (Mukherjee et al. 2023) atmospheric models to improve characterization.

Water is a key molecule for our atmosphere, and has been prominent in exoplanet observations since early transmission spectra (Tinetti et al. 2007; Swain et al. 2009). The water line lists discussed above have relied on numerous experimental studies to accurately determine spectroscopic parameters (e.g. positions, intensities, line shapes, broadening coefficients, pressure shifts, temperature dependencies), and to refine assignments. Indeed, some of the current theoretical line lists of H₂O suitable for high temperature analyses have their origin in earlier works that identified new transitions of high-temperature water vapour on the Sun (Wallace et al. 1995; Polyansky et al. 1997; Viti et al. 1998). Some examples of recent high-temperature water vapour studies that use FTS (Zobov et al. 2008; Alberti et al. 2015), scanned laser spectroscopy (Melin & Sanders 2018; Melin, Sanders & Nasir 2020) and frequency comb studies (Schroeder et al. 2017; Rutkowski et al. 2018) have all helped to refine spectroscopic parameters for H₂O line lists and to constrain ab initio calculations. Hot (1723 K) laboratory studies have also been used to test and confirm the accuracy of the available line lists (Melin et al. 2020).

Small polyatomic molecules such as ammonia and methane can have complex infrared spectra when observed at high resolution, and spectroscopic analyses at high temperatures provide opportunities for extending rovibrational assignments (Barton et al. 2015). Simplified empirical line lists have been produced by analysing multiple measurements at a variety of different temperatures, as done for NH₃ (Hargreaves et al. 2012) and CH₄ (Beale et al. 2017; Ghysels et al. 2018; Malarich et al. 2021). These simplified line lists lack spectroscopic assignments but constitute empirical line positions, intensities, and lower state energies, and are capable of reproducing the experimental spectra over the temperature range of the studies and can be used to characterize brown dwarf and exoplanet atmospheres. Analyses of these line lists can then be performed to determine line assignments and constrain calculated parameters. Furthermore, the measured spectra can be converted into experimental absorption cross-sections (Wong et al. 2019) that can themselves be used as input data to planetary models in place of line lists, or can be used to compare the accuracy of multiple high temperature line lists as done for CH₄ (Hargreaves et al. 2020). Measurements of absorption cross-sections up to temperatures of 1600 K (Alrefae, Es-sebbar & Farooq 2014; Es-sebbar & Farooq 2014; Wong et al. 2019), become particularly necessary for molecules when no complete line lists exists (also Section 2.1.3).

Each edition of the HITRAN data base incorporates a substantial proportion of experimentally derived parameters and readers are directed towards the paper describing HITRAN2020 (Gordon et al. 2022, and references therein) for a summary of relevant spectroscopic experimental studies that apply to molecules given in Table 4. In addition, it should be noted that the MARVEL (measured active

rotation-vibration energy levels) methodology (Furtenbacher et al. 2007) (see Section 2.1.4), which is used to empirically correct energy levels of ab initio line lists (e.g. Yurchenko et al. 2022), is built upon an extensive survey of experimental measurements, and readers are also directed to each work for a summary of relevant literature.

It is worth stressing that experimental measurements can be particularly challenging for reactive (or toxic) species, especially at high temperatures, which can limit the availability of parameters. In most cases, the absolute intensities are not available experimentally for species and therefore relying on the theory is the only option. It is therefore not uncommon for some spectroscopic parameters, including intensities (and associated lifetimes) as well as pressure-broadening (Tan et al. 2022), to be based only on limited laboratory measurements for some molecules (e.g. H₂ broadening of CO₂).

Spot-light: frequency comb-based spectroscopy: This section presents a deeper dive into different aspects of frequency comb spectroscopy with the emphasis on its potential for providing spectroscopic data for exoplanetary spectroscopic studies.

Recent advancements in frequency comb sources and comb-based spectroscopic techniques (Gohle et al. 2007; Foltynowicz et al. 2011; Maslowski et al. 2016; Kowzan et al. 2016; Coddington, Newbury & Swann 2016; Changala et al. 2016; Weichman et al. 2019; Ycas et al. 2018; Krzempek et al. 2019; Muraviev, Konnov & Vodopyanov 2020; Foltynowicz et al. 2021b) have provided new opportunities for broad-band precision molecular spectroscopy. The combination of large bandwidth, high spectral resolution, and high frequency accuracy provided by frequency combs make them ideal sources for high-precision measurements of spectroscopic molecular parameters. Such high-resolution measurements are an essential component to improving the accuracy of theoretically derived line lists (see Sections 2.1.2 and 2.1.4). Frequency combs can either be used directly as light sources for broad-band high-resolution spectroscopy (which is referred to as direct frequency comb spectroscopy) or as references to calibrate the frequency axis of tunable-laser-based spectrometers (referred to as comb-referenced spectroscopy). While the simultaneous spectral coverage of most frequency combs cannot yet compete with incoherent sources, the spectral resolution of comb-based spectrometers is orders of magnitude better than that of an FTS spectrometer based on an incoherent light source, allowing the measurement of undistorted line profiles at low pressures with sub-MHz accuracy on line positions. Moreover, the spectral and spatial coherence of the combs make possible the use of path length enhancement methods, such as multi-pass cells (Adler et al. 2010b) and cavities (Adler et al. 2010a), to increase the absorption sensitivity and detect weak absorption bands. Comb-referenced cavity-enhanced tunable-laser-based spectrometers provide even better absorption sensitivity and – when combined with saturation spectroscopy – line positions with kHz accuracy.

Below we give an overview of precision measurements using direct frequency comb spectroscopy and comb-referenced spectroscopy, with a focus on measurements that led to new line lists or substantial improvement of existing ones for different molecules. We note that an exhaustive coverage of all measurements involving frequency combs is beyond the scope of this work.

Table 8 summarizes a selection of experimental line lists obtained from measurements using different direct frequency comb spectroscopy techniques. Most of these measurements were performed at room temperature using direct absorption in multipass cells or enhancement cavities. Many of the works provided also line intensities, and pressure broadening and shift parameters. Three of the room temperature line lists have already been used to update the data bases, namely the ν_4 band region (3000–3160 cm⁻¹) of

Table 8. Molecular line lists obtained from direct frequency comb spectroscopy measurements using different methods: DCS – dual comb spectroscopy; FTS – Fourier transform spectroscopy; Vernier – Vernier spectroscopy; VIPA – spectrometers based on virtually imaged phased array; PAS – photoacoustic spectroscopy; OODR – optical-optical double resonance spectroscopy; CE – cavity enhanced. The spectral coverage and temperature range are also indicated; RT – room temperature. All works listed here provided line positions, and some, indicated in the ‘Parameters’ column, provided also intensities, S , self, air, and reaction matrix broadening parameters, γ_{self} , γ_{air} , γ_p , and self shift parameters, δ_{self} .

Molecule	Range (cm ⁻¹)	Range (μm)	Method	T (K)	Parameters	Reference
H ₂ O	6800–7200	1.39–1.47	DCS	296–1300	γ_{self} , γ_{air}	Schroeder et al. (2017)
	6250–6670	1.50–1.60	CE FTS	1950	S	Rutkowski et al. (2018)
CO ₂	5064–5126	1.95–1.97	CE Vernier	RT	S , γ_{self}	Siciliani de Cumis et al. (2018)
	6800–7000	1.43–1.47	DCS	495–977	line mixing	Cole et al. (2023)
N ₂ O	1250–1310	7.63–8.00	FTS	RT	–	Hjältén et al. (2021)
CO	6310–6365	1.57–1.58	CE VIPA	RT	γ_{self} , δ_{self}	Kowzan et al. (2019)
	2040–2230	4.48–4.90	FTS	RT	–	Nishiyama et al. (2024)
CH ₄	1250–1380	7.25–8.00	FTS	RT	S	Germann et al. (2022)
	2900–3050	3.28–3.45	DCS	RT	–	Baumann et al. (2011)
	5870–6130	1.63–1.70	DCS	RT	–	Zolot et al. (2013)
	5900–6100	1.64–1.69	OODR	111	–	Foltynowicz et al. (2021a)
	5910–5980	1.67–1.69	OODR	RT	–	Oliveira et al. (2024)
	6770–7570	1.32–1.48	DCS	296–1000	γ_{self} , δ_{self}	Malarich et al. (2021)
¹³ CH ₄	1250–1380	7.25–8.00	FTS	RT	S	Germann et al. (2022)
¹⁴ CH ₄	2910–3110	3.22–3.44	PAS	RT	–	Karhu et al. (2019)
H ₂ CO	1250–1380	7.25–8.00	FTS	RT	S	Germann et al. (2024)
H ¹³ CN	6390–6535	1.53–1.56	DCS	RT	S	Guay, Genest & Fleisher (2018)
C ₂ H ₂	6430–6630	1.51–1.56	DCS	RT	–	Zolot et al. (2013)
CH ₃ I	3000–3160	3.16–3.3	FTS	RT	S	Sadiek et al. (2020)
	2930–3160	3.16–3.57	FTS	RT	S	Hjältén, Foltynowicz & Sadiek (2023)
CS ₂	2110–2200	4.55–4.74	DCS	RT	S	Karlovs et al. (2020)
HfF ⁺	11 500–13 000	0.77–0.87	CE VIPA	823	–	Cossel et al. (2012)
CH ₃ NO ₂	2940–3090	3.24–3.40	CE FTS	10–20	–	Spaun et al. (2016)
CH ₂ CHBr	3023–3033	3.30–3.31	CE FTS	10–20	–	Changala et al. (2016)
DOCO	2380–2750	3.64–4.20	CE FTS	RT	–	Bui et al. (2018)
C ₆₀	1180–1190	8.40–8.47	CE FTS	150	–	Changala et al. (2019)
CH ₂ OO	1217–1287	7.77–8.22	DCS	RT	γ_p	Luo (2020)
CH ₂ Br ₂	2960–3120	3.21–3.38	FTS	RT	–	Sadiek et al. (2023)

CH₃I (Sadiek et al. 2020) and the $\nu_1 + \nu_3$ band region (2110–2200 cm⁻¹) of CS₂ (Karlovs et al. 2020) were used in updates to the HITRAN2020 data base (Gordon et al. 2022), and the ν_6 and ν_4 band region (1250–1380 cm⁻¹) of H₂CO measured by Germann et al. (2024) was used to improve the accuracy of the ExoMol line list for H₂CO (Al-Refaei et al. 2015; Al-Derzi et al. 2021).

To study complex molecules, whose spectra are unresolved at room temperature, buffer gas cooling has been implemented to reduce the number of populated rotational and vibrational states. Combining buffer gas cooling with cavity-enhanced comb spectroscopy allowed the measurement of rotationally resolved spectra of nitromethane (CH₃NO₂), napthalene (C₁₀H₈), adamantane (C₁₀H₁₆), and hexamethylenetetramine (C₆N₄H₁₂) (Spaun et al. 2016), and vinyl bromide (CH₂CHBr) (Changala et al. 2016) in the 2850–3070 cm⁻¹ range, as well as the buckminster fullerene (C₆₀) in the 1180–1190 cm⁻¹ range (Changala et al. 2019).

Cavity-enhanced comb spectroscopy has also been combined with velocity-modulation to measure four bands of a molecular ion HfF⁺ in the 11 500–13 000 cm⁻¹ range (Cossel et al. 2012). Finally, the time-resolved capabilities of comb spectroscopy have been used to measure high-resolution spectra of trans- and cis-DOCO transients (products of the OD+CO reaction) in the OD stretch region 2380–2750 cm⁻¹ (Bui et al. 2018), as well as the pressure broadening of absorption lines of the short-lived CH₂OO Criegee intermediate (Luo 2020) in the 1217–1287 cm⁻¹ range.

Table 9 summarizes a selection of experimental line lists obtained from measurements using different comb-referenced spectroscopy

techniques. Many works using comb-referenced cavity-enhanced techniques in the near-infrared provided transition frequencies for overtone and combination bands with kHz level accuracy for, e.g. H₂O (Chen et al. 2018; Kassi et al. 2018; Tóbiás et al. 2020, 2024), CO₂ (Guo et al. 2021; Reed et al. 2021; Fleurbaey et al. 2023), CO (Mondelain et al. 2015; Wang et al. 2021), and CH₄ (Votava et al. 2022). In the mid-infrared, sub-MHz and kHz level accuracy was obtained for the fundamental bands of CH₄ (Kocheril et al. 2018), N₂O (Knabe et al. 2013; Ting et al. 2014; AlSaif et al. 2018), CHF₃ (Vicentini et al. 2020), and CH₃OH (Santagata et al. 2019) using saturation and Doppler-broadened spectroscopy in absorption cells, and for CH₄ using sub-Doppler cavity-enhanced spectroscopy (Okubo et al. 2011; Abe et al. 2013). Three of these works have already been used for updating the data bases and are included as part of HITRAN2020 (Gordon et al. 2022). This includes line positions for the 3 ← 0 and 4 ← 0 bands of CO (Mondelain et al. 2015) and the ν_3 region of CH₄ (Abe et al. 2013), with the work of Fleurbaey et al. (2021) included in a fit for line positions of the 1.27 μm band of O₂. Line intensities were provided only by a couple of works using CRDS in the Doppler-limited regime, since saturation spectroscopy often does not yield absolute intensities.

2.1.3 Alternative parametrizations

Absorption cross-section measurements: Determining an accurate line list for a large proportion of known molecules is not practical, or possible, due to the complexity of assigning congested

Table 9. Molecular line lists obtained from comb-referenced spectroscopy measurements using different methods: CRDS – cavity ring down spectroscopy; NICE-OHMS – noise-immune cavity enhanced optical heterodyne molecular spectroscopy; CRSS – comb-referenced saturation spectroscopy, DAS – direct absorption spectroscopy; CEAS – cavity enhanced absorption spectroscopy, NICE-VMS – noise-immune cavity enhanced velocity modulation spectroscopy. The spectral coverage of each is also indicated.

Molecule	Band	Range (cm ⁻¹)	Range (μm)	Method	Reference
H_2^{16}O	(013 ← 000)	12 621–12 665	0.789–0.792	CRDS	Chen et al. (2018)
	(101 ← 000)	7164–7185	1.391–1.396	CRDS	Kassi et al. (2018)
	(200 ← 000)	7000–7350	1.36–1.43	NICE-OHMS ^a	Tóbiás et al. (2020), Diouf et al. (2022) Tóbiás et al. (2024)
H_2^{17}O	(200 ← 000) ^b	7228–7289	1.37–1.38	NICE-OHMS	Melosso et al. (2021)
H_2^{18}O	(200 ← 000)	7000–7350	1.36–1.43	NICE-OHMS ^a	Diouf et al. (2021), Tóbiás et al. (2024)
H_2O^c	Several ^d	8041–8633	1.15–1.24	CRDS	Koroleva et al. (2023b)
$^{12}\text{C}^{16}\text{O}_2$	(30012 ← 00001)	6170–6370	1.57–1.62	CRDS	Reed et al. (2021)
	(30013 ← 00001)				
	(30012 ← 00001) ^d	6170–6370	1.57–1.62	CRDS	Guo et al. (2021)
	(20012 ← 00001)	4830–5010	1.99–2.07	CRDS	Fleurbaey et al. (2023)
	(20013 ← 00001)				
$^{14}\text{C}^{16}\text{O}_2$	(01111 ← 01101)	2306–2312	4.33–4.34	CRSS	Galli et al. (2013)
	(00011 ← 00001)	2190–2250	4.44–4.57	CRDS	Galli et al. (2011)
N_2O	$3\nu_1$	6518–6578	1.52–1.53	CRDS	Liu et al. (2019)
	$3\nu_1$	6518–6578	1.52–1.53	DAS	Iwakuni (2022)
	ν_3	2190–2210	4.52–4.57	DAS	Knabe et al. (2013)
	ν_3	2130–2270	4.41–4.69	CRSS	Ting et al. (2014)
	ν_1	1250–1310	7.63–8.00	DAS	AlSaif et al. (2018)
N_2O^e	– ^d	8320–8620	1.16–1.20	CRDS	Karlovets et al. (2021), Karlovets et al. (2022)
CO	(7 ← 0) ^d	14 300–14 500	0.689–0.699	CRDS	Balashov et al. (2023)
	(3 ← 0)	6170–6420	1.56–1.62	CRDS	Mondelain et al. (2015)
	(3 ← 0)	6170–6420	1.56–1.62	CRDS	Kowzan et al. (2017)
	(3 ← 0)	6170–6420	1.56–1.62	CRDS	Wang et al. (2021)
	(4 ← 0) ^d	8206–8465	1.18–1.22	CRDS	Bordet, Kassi & Campargue (2021)
CH ₄	$2\nu_3$	6015–6115	1.64–1.66	CRDS	Votava et al. (2022)
	ν_3	2890–3120	3.21–3.46	CEAS	Okubo et al. (2011), Abe et al. (2013)
	ν_3	2890–3120	3.21–3.46	CRSS	Kocheril et al. (2018)
O ₂	B band ^d	14 539–14 550	0.687–0.688	CRDS	Domysławska et al. (2020)
	(0,0) ^d	7800–7960	1.26–1.28	CRDS	Fleurbaey et al. (2021)
H ¹³ CN	$2\nu_3$	6390–6536	1.53–1.56	CRSS	Hrabina et al. (2022)
D ₂ H ⁺	ν_1	2588–2930	3.41–3.86	NICE-VMS	Markus, Kocheril & McCall (2019)
CHF ₃	ν_5	1156–1160	8.62–8.65	CRSS	Vicentini et al. (2020)
CH ₃ OH	ν_5	970–973	10.29–10.30	CRSS	Santagata et al. (2019)
Benzene	ν_{11}	675–689	14.5–14.8	DAS	Lamperti et al. (2020)

^a: Assisted with spectroscopic networks; ^b: Hyperfine-resolved; ^c: Six isotopologues; ^d: Intensities provided; ^e: Five isotopologues

spectra (Sousa-Silva, Petkowski & Seager 2019; Zapata Trujillo & McKemmish 2022a, b, 2023). In such instances, numerous individual lines typically blend into unresolved spectral bands. However, these molecules can still form strong detectable features in atmospheric spectra, and their spectroscopic signatures are required in retrieval frameworks for detection, in addition to improving the retrieval accuracy of planetary characteristics or other atmospheric species. To provide this necessary data, it is common practice to carefully measure experimental absorption cross-sections. These measurements are required to cover the expected temperature and pressure conditions of the appropriate planetary atmosphere, as well as including the appropriate broadening gases (e.g. H₂, He, N₂, etc) at a resolution that provides sufficient details.

Cross-sections are not just restricted to the infrared or visible wavelength regions; many valuable cross-sections which cover the UV region are regularly employed in Earth observations, for example. There are many cross-sections included in the HITRAN data base that cover the UV and visible regions, such as SO₂ and O₃. While this section will mainly discuss infrared and visible absorption cross-sections due to the relevance for *Ariel*, UV absorption cross-sections are also important for exoplanet atmosphere models used to

inform our understanding of observed planets. UV cross-sections also have special continuum features related to photodissociation and photoabsorption effects; see Section 8 where we discuss these separately.

The Pacific Northwest Nation Laboratory (PNNL) produced a large catalogue (Sharpe et al. 2004) of infrared absorption cross-sections for many chemical compounds recorded at 1.0 atm with a Fourier transform spectrometer at temperatures of 5, 25, and 50°C. Species included compounds that were difficult to measure in the laboratory. These cross-sections are no longer available from PNNL directly, but the majority of these measurements are now included as part of the HITRAN data base (Gordon et al. 2022). The HITRAN data base provides experimental absorption cross-sections of over 300 molecules (Kochanov et al. 2019), in addition to the line-by-line molecules described above. HITRAN also regularly expands the available data with each new edition (Gordon et al. 2022).

It should be noted that many chemical compounds have been measured due to signatures appearing in Earth observation measurements. For example, chlorine-containing compounds (e.g. chlorofluorocarbons) are intensely monitored because their reactions in the atmosphere lead to the depletion of stratospheric ozone. Therefore,

the temperature and pressure coverage of absorption cross-sections is regularly expanded for improved accuracy of retrievals, for example, using Fourier transform measurements of the molecule contained in a cold cell (Harrison 2018).

Other planets of the Solar System (and their moons) contain many trace gases, which are typically retrieved using experimental absorption cross-sections. For example, Titan, with its rich hydrocarbon atmosphere, requires cross-section measurements of nitrogen broadened species at low temperatures (e.g. Sung et al. 2013, 2018; Vuitton et al. 2019). Similarly, H₂ and He broadened measurements are required for the Jovian planets (e.g. Sung, Toon & Crawford 2016b; Dodangodage et al. 2020). It is expected that some of these species will be present at elevated temperatures in warm Gas Giant exoplanetary atmospheres (Fleury et al. 2023b), therefore recent studies have also provided experimental absorption cross-sections at elevated temperatures (e.g. Alrefae et al. 2014; Hargreaves et al. 2015; Beale et al. 2016; Bernath & Fernando 2021; Adil et al. 2023).

The limited number of absorption cross-section measurements for specific temperatures and pressures makes them less flexible than line lists. However, techniques have been developed to interpolate between measurements with polynomial coefficients (Buehler et al. 2022) as well as producing pseudo-line lists (Steffens et al. 2023). Each technique does not identify quantum mechanical transitions, as is the case for spectroscopic line lists (see earlier in Section 2), but instead empirical parameters are determined that can reproduce the absorption cross-section intensity over the range of measurements. However, care should be taken when extrapolating these techniques to conditions beyond those used from the initial studies.

Ariel will cover the \sim 2500–5000 cm^{−1} (\sim 2–4 μ m) region at a resolving power of 100 (see Table 1), which spans the spectral range where key molecular functional groups (e.g. C-H stretch at \sim 3000–3300 cm^{−1}) exhibit strong absorption. The majority of the absorption cross-sections described above and included in HITRAN have spectral features within this region. Some of these molecules have already been proposed as biosignatures (Zhan et al. 2021) or technosignatures (Haqq-Misra et al. 2022), due to their distinct spectral features and limited pathways for synthesis. Indeed, it was in this spectral range that the recent tentative detection of dimethyl sulphide (DMS or (CH₃)₂S) was made from transit spectra of K2-18b recorded using *JWST* (Madhusudhan et al. 2023) and absorption cross-sections in HITRAN.

Polycyclic aromatic hydrocarbons (PAHs) and tholins are known to contribute significantly to the optical properties of Solar System planetary spectra (Abdel-Shafy & Mansour 2016; Zhao et al. 2018). They have an optical slope similar to cloud/hazes, potentially causing a degeneracy in the interpretation of spectral data caused by aerosols (see Section 6, and, for example, fig. 1 of Ercolano et al. (2022)). Ercolano et al. (2022) explore the detectability of PAHs observed with *Ariel* (Tinetti et al. 2018) and Twinkle (Edwards et al. 2019a), finding there is a possibility of detection. Dubey et al. (2023) investigate the formation processes of various PAHs on the thermalized atmospheres of hot Jupiter exoplanets, and found that planets with an effective temperature of around 1300 K are the most promising targets for investigating PAHs, particularly for atmospheres with a high carbon-to-oxygen ratio (C/O) and high metallicity. A follow-up study by Grübel et al. (in preparation) focuses on the intercomparison of different cloud/haze, PAHs and tholin models while retrieving the best case scenario for a particular planet, Wasp-6 b. The cross-sections presented by Ercolano et al. (2022), based on calculations of Draine & Li (2007), represent a combined effect observed from a collection of crystalline PAHs. These cross-sections are consistent with observations of the

interstellar medium (ISM) and thus presumably originate from a diverse PAH mixture. Given the sheer amount of different molecules, they currently represent the most convenient way to implement PAHs in atmospheric retrievals. The NASA Ames PAH IR Spectral Data base is a source of cross-section data for PAHs (Boersma et al. 2014; Bauschlicher et al. 2018; Mattioda et al. 2020),¹³ offering extensive data on thousands of PAHs, although primarily for the identification within interstellar emission spectra rather than for their detection in exoplanetary atmospheres.

Vibrational frequency calculations: The computation of a full ro-vibrational line list for one species can be very time consuming, and often takes years to produce. There has thus been work on computing the vibrational spectra for a large number of species, and then adding rotational substructure (for example using software such as PGOPHER; Western 2017), in order to indicate where prominent spectral features are expected. Root mean square errors of such computations are typically on the order of 15–25 cm^{−1} (Zapata Trujillo & McKemmish 2022a), with higher order computational chemistry or laboratory-derived data required to be incorporated for higher accuracies. There are some notable absorption features in the observed spectra of some exoplanet atmospheres, for example in WASP-39b's atmosphere at 4.56 μ m as observed by *JWST* (Alderson et al. 2023), which have yet to be identified among the species with available ro-vibrational spectra. There is benefit in identifying potential species or types of species which could fit such features, which could then give incentive for more detailed work into the full ro-vibrational spectra. The computation of such vibrational frequencies for large numbers of molecules is facilitated by studies into the best practice for appropriate model chemistry choices for harmonic frequency calculations, such as Zapata Trujillo & McKemmish (2022a, 2023). VIBFREQ1295 (Zapata Trujillo & McKemmish 2022b) is a data base of vibrational frequency calculations. RASCALL (Rapid Approximate Spectral Calculations for ALL) (Sousa-Silva et al. 2019) is an approach which can simulate spectra consisting of approximate band centres and qualitative intensities for a huge number of species. The approximate spectra for a large number of phosphorus-bearing species was computed by Zapata Trujillo et al. (2021), building upon the RASCALL data base by using quantum chemistry to improve on the accuracy of the approximate spectra for these species.

In addition, computations are available which focus on the vibrational spectra of nanoclusters, such as (TiO₂)_n, which can be important for exoplanet atmosphere models or observations in the IR (Sindel et al. 2023). Vibrational frequencies of other nanoclusters have been computed, such as (VO)_n up to $n = 10$ (Lecoq-Molinos et al. 2024), (VO₂)_n up to $n = 10$ (Lecoq-Molinos et al. 2024), (V₂O₅)_n up to $n = 4$ (Lecoq-Molinos et al. 2024), Ti_xO_y (Jeong et al. 2000), and (MgO)_x (Chen, Felmy & Dixon 2014).

2.1.4 How high-resolution laboratory spectroscopy can help improve the accuracy of theoretically computed line lists

There are several ways in which laboratory spectroscopy can contribute to the data needs of exoplanetary atmospheric studies, some of which are already in active use and some require more investment. The most common and efficient methodology of the production of spectroscopic data is semi-empirical, in which molecular spectra are first measured at given laboratory conditions (temperature, pressures, wavelength range etc), analysed, and then inter- or extrapolated to conditions dictated by the retrieval frameworks. A typical example

¹³<https://www.astrochem.org/pahdb/>

illustrating the need for such extrapolations is that most of the existing experimental molecular spectra have been recorded at, or close to, the ambient atmospheric conditions on Earth, i.e. room temperature and pressure, and for specific spectroscopic ranges dictated by the experimental setup. A typical retrieval procedure, on the other hand, requires a broad range of temperatures, pressures, and wavelengths, on dense grids of the corresponding values (for example, pressures between at least 1×10^{-5} –100 bar, and temperatures ~ 100 –3000 K). This is achieved by representing the experimental data in some functional forms, the so-called spectroscopic models, of different complexity and extrapolation power.

This is a powerful, well established procedure, which is however very hungry for experimental data. Some molecules have almost no spectra measured, especially those corresponding to extreme conditions such as suggested for the atmospheres of the so-called Lava planets, including SiO₂, KOH, NaOH, and MgOH (Schaefer, Lodders & Fegley 2012; Tennyson & Yurchenko 2017). Apart from the mainstream atmospheric molecules, such as those described in Section 2.1.2, with relatively accessible spectra, there is a serious lack of analysed laboratory spectra for a large number of molecules at higher temperatures and lower wavelengths.

The so-called effective Hamiltonians (such as used by CaSDa) based on Taylor-type expansions with respect to the angular momenta with a large set of empirical spectroscopic constants provide very accurate description of the experimental spectra (usually recorded at room temperature) but with rather limited extrapolation power (e.g. to higher temperatures and especially to higher energies). These methods usually benefit from an extensive rotational coverage of individual vibrational bands in a given spectroscopic regions and thus are ideally suitable for the analysis of the FTS-like broad-band techniques, as mentioned above. The so-called empirically adjusted ab initio techniques (employed by ExoMol, TheoReTS, and NASA Ames) are based on the empirical refinement of the underlying inter-nuclear ab initio spectroscopic properties, such e.g. potential energy surfaces (PES). These methods hugely benefit from analysed laboratory data (line positions and energies), ideally with an extensive coverage of the vibrational excitations at the lowest rotational excitations to minimize the coupling between the rotational and vibrational degrees of freedom. Put simply, experimental information on vibrations is especially important to increase the quality of the extrapolation of the empirical model, while the rotational information is more useful for interpolation and benchmarking of the models. These type of empirical techniques are less accurate than effective Hamiltonians when it comes to matching the experiment, but are very powerful when extrapolating to higher temperatures and even higher energies.

The MARVEL (Measured Active Rotation–Vibration Energy Levels) (Furtenbacher et al. 2007) process involves analysing high-accuracy laboratory measured spectra to get out experimentally determined energy levels. These energy levels are then used in theoretically computed line lists to improve the accuracy of all transitions which involve those levels. In the case of the ExoMol data base, the MARVEL process has been applied to molecular line lists for species such as C₂H₂ (Chubb et al. 2018a), TiO (McKemmish et al. 2017), H₂CS (Mellor et al. 2022), C₂ (Furtenbacher et al. 2016; McKemmish et al. 2020), CaOH (Wang et al. 2020b), H₂S (Chubb et al. 2018b), NH₃ (Al-Derzi et al. 2015; Furtenbacher et al. 2020), AlO (Bowesman et al. 2021), H₂CO (Al-Derzi et al. 2021; Germann et al. 2024), H₃⁺ (Bowesman et al. 2022), and OCS (Xu & Tennyson 2024) as well as ongoing efforts to refine the line list of PH₃. Due to new laboratory data becoming available, the MARVEL process for improving the accuracy of theoretical line lists need to be assessed

periodically. The opacities computed from line lists therefore also ideally need recomputing periodically, as the accuracy and coverage of line lists improve (see Section 4).

Regardless of the method used to improve the accuracy of theoretically computed line lists, their key common feature is the strong dependence on experimental laboratory data. Even the best modern ab initio methods, except perhaps of very limited systems, do not have the required quality to be used in atmospheric applications and need to be either completely constructed from scratch, such as for the effective Hamiltonians, by fitting the corresponding expansion, the so-called spectroscopic, parameters, or refined, such as for the ab initio methods, by fitting the corresponding analytic descriptions of the spectroscopic models to the experimental data.

Our general appeal to the experimental spectroscopists who would like to engage with exoplanetary atmospheric studies is to talk to the atmospheric modellers about their direct needs in terms of the species, temperature, and wavelength coverage and also talk to the line list providers about their needs in terms of the vibrational and rotational coverage.

2.2 Data used by retrieval codes

Owing to the importance of the line lists for atmospheric retrievals, it would not be an exaggeration to say that all, or close to all, the line lists discussed throughout this section, have already been or are in the process of being included in the main (exo-)planetary retrieval frameworks. It is the usual practice of exoplanetary atmospheric modellers to implement new line lists or important updates into their retrieval programs periodically; this usually involves building molecular opacities in the form of cross-sections or k-tables. Details on opacities used in various retrieval codes can be found in Section 4.

2.3 What's being worked on?

(i) **ExoMol:** at the time of writing, the following line lists are in progress by the ExoMol project (see Section 2.1.1 ‘ExoMol’), either as new species or improvements/updates to existing line lists; diatomics: OH, PN, CO, CH, CS, OH⁺, NO⁺, NiH, CrH, AlF, BH, ZrS; triatomics in IR: HCN, HOD; triatomics (electronic): HCN; larger polyatomic (IR): C₂H₂, C₂H₆. MARVEL studies for N₂O isotopologues [see Tennyson et al. (2024a) for ¹⁴N₂¹⁶O], CO₂ (see Ibrahim et al. 2024; Alatoom et al. 2024), CO, HCN/HNC, HCO⁺, BH, CS₂, C₂H₄, and ¹⁵NH₃ are being performed as well as updates to ¹⁴NH₃, HCCH, and inevitably, water.

(ii) **TheoReTS:** line lists for several species including CH₂, CH₃, NH₃, H₂CCN, H₂NCN, CH₃Cl, C₃H₄, H₂O₂, CCl₄, CH₃CN, or C₂H₆ are being worked on, and will be gradually uploaded to the TheoReTS data base (see Section 2.1.1 ‘TheoReTS’).

(iii) **CaSDa:** the CaSDa data base is working on producing new IR data for the existing species listed in Table 5, including new bands and new isotopologues (e.g. for CH₃D). They also plan to develop new line lists for species such as SiH₄ and C₃H₆O₃ (see Section 2.1.1 ‘CaSDa’).

(iv) **NASA Ames:** line lists for sulphur-bearing species OCS and CS₂ (see Section 2.1.1 ‘NASA Ames data base’).

(v) **HITRAN and HITEMP:** Work toward the next edition of the HITRAN data base is underway, which will include works highlighted in the HITRAN2020 paper (Gordon et al. 2022) and additional recent literature. Examples include expanding the 3800–4800 cm⁻¹ region of NH₃, the addition of new molecules such as S₂ (Gomez, Hargreaves & Gordon 2024).

(vi) **Non-LTE conditions:** although most studies of exoplanet atmospheres assume species to be in local thermodynamic equilibrium (LTE), effects arising from non-LTE conditions are known to be important in Earth's upper atmosphere, as well as in the atmospheres of other Solar System planets. In the most accurate treatment, non-LTE radiative transfer calculations determine the populations of all the atomic and molecular states involved by considering the relevant species' rates with respect to radiative decay and collisional excitation, de-excitation as well as potentially ionization and other processes (Wright, Waldmann & Yurchenko 2022). However, complete data sets are rarely available for this purpose; even for the Non-LTE of H atoms, some of the collisional data are not so well known. In particular, data for collisions of H atoms with heavy particles (atoms/molecules) are lacking (García Muñoz & Schneider 2019). Studies such as Wright et al. (2022) are working towards improving data and models for non-LTE effects in exoplanet atmospheres. In a recent work, García Muñoz, Asensio Ramos & Faure (2024) also considered non-LTE effects and emphasized the importance of H₂O–H₂O excitation collisions, especially for the vibrational modes of the molecule.

(vii) **Vibrational modes of molecular clusters:** vibrational spectra from DFT calculations are in progress for species such as (TiO)_n clusters up to $n = 10$ and (SiO)_n clusters up to $n = 20$ (Lecoq-Molinos, in preparation).

(viii) **Quantum computing approaches:** ab initio line list parameters are currently calculated using modern high-performance computers, particularly crucial for line lists containing millions to billions of transitions. However, the algorithms used can become computationally intensive and time consuming, scaling with the complexity of the molecule and temperature coverage. Quantum computers could be an alternative solution, even though fault-tolerant quantum computers are unlikely to be available in the immediate future. Variational quantum algorithms (VQAs) and, in particular, variational quantum eigensolvers (QVEs) are promising class of algorithms to estimate the eigenstates and the corresponding eigenvalues of a given Hamiltonian (Cerezo et al. 2021; Tilly et al. 2022). This kind of technology demonstrates the potential, from a theoretical point of view, to describe the electronic structure of complex molecules faster. In the near future, a quantum speedup would be ideal to describe precise line lists (Innan, Al-Zafar Khan & Bennai 2024).

2.4 Data needs: what's missing and urgent?

The main molecules expected to be observed by *Ariel* and *JWST* are the usual atmospheric suspects, H₂O, CO₂, and CH₄, as well as the recently detected SO₂. The line lists for these species are generally in a good shape both in terms of temperature completeness and in terms of accuracy, at least as far as space-based observations in the IR are concerned. This applies to other potentially detectable, common atmospheric absorbers such as NH₃, HCN, N₂O, NO, C₂H₂ etc. While the existing data for these species should be at a high level of readiness for the majority of low-to-medium resolution studies including *JWST* or *Ariel*, not all line lists extend to low enough wavelengths to cover the entire range observed by these telescopes – see for example, the wavelength ranges in tables 7–15 of Chubb et al. (2020b) for a number of high-temperature line lists and should be considered when interpreting observed spectra which includes a wavelength region not covered by a given line list. Not taking this into account could cause some biases in analyses which extend beyond the wavelength range of current line lists. Extending current line lists into the optical is therefore very important. Less mainstream or more

exotic molecules are not at such a good readiness level, some of which we review in the following. The line lists for high resolution (HR) applications require even more work. With some exceptions, such as H₂O or CO₂ in the mid-IR, HR applications demand further improvement of the quality and quantity of the laboratory data at high temperatures for most of the molecules. The data needs discussed below are mostly for the IR and optical regions as directly imposed by the observational and associated retrieval coverage of *Ariel* and *JWST*. However, the data needs in shorter wavelengths, UV, and even far-UV, are dictated by the atmospheric chemistry models (see Section 7).

(i) **Species occurring in *JWST* studies:** The recent potential detection of CS₂ in the exoplanetary atmosphere of TOI-270d (Benneke et al. 2024; Holmberg & Madhusudhan 2024) is an example of a molecule requiring improvement of the spectral coverage of associated molecular data, highlighting the need for line lists of sulphur species such as CS₂ up to high temperatures. The recent observation of SO₂ in the atmosphere of hot gas giant exoplanet WASP-39 b (Tsai et al. 2023; Powell et al. 2024) and in the atmosphere of warm Neptune WASP-107 b (Dyrek et al. 2024) prompted an increase in interest in sulphur species, with theoretical studies such as Janssen et al. (2023) predicting the importance of them also in hot rocky exoplanet atmospheres. The SO₂ line list of Underwood et al. (2016a) is considered complete up to high temperatures of \sim 2000 K in the wavelength range it covers, but only covers wavelengths down to 1.25 μ m. This will lead to an underestimation of opacity in the wavelength region below 1.25 μ m for model atmospheres including SO₂. The main reason for the lack of wavelength coverage of the line list is that the quantum chemistry computations used for computing a high-temperature line list can become extremely computationally extensive with increasing energy (decreasing wavelength), especially for molecules composed of heavier atoms. Considering the recent SO₂ detections in exoplanet atmospheres, having a high temperature line list extending to lower wavelengths is a high priority.

(ii) **Ti- and V-bearing species:** Hoeijmakers et al. (2020) predict significant concentrations of gas-phase TiO₂, VO₂, and TiS in the atmosphere of hot Jupiter exoplanet WASP-121b. These could be important absorbers, potentially accessible both by the high and low resolution observational methods, which currently do not have any available ro-vibrational (IR) or rovibronic (Vis and UV) line lists.

(iii) **Species relevant to lava planets:** recent studies suggested that modelling the atmospheric properties of hot-Super Earth (lava) exoplanets require different types species to be considered, including KOH, NaOH, SiO₂, CaOH, FeO, MgO, MgOH (Schaefer et al. 2012; Mahapatra, Helling & Miguel 2017; Tennyson & Yurchenko 2017). There have therefore been calls for line lists for these species spanning the IR and visible spectral region. We note these calls have been somewhat addressed and there are now available line lists from ExoMol for KOH and NaOH (IR) (Owens et al. 2021), SiO₂ (IR) (Owens et al. 2020), CaOH (IR, Vis) (Owens et al. 2022b), MgO (IR, UV) (Li et al. 2019). Theoretically, FeO is particularly challenging; there are more than fifty low-lying electronic states (Sakellaris, Miliordos & Mavridis 2011; Tennyson & Yurchenko 2017).

(iv) **Carbon and hydrocarbon species:** for example, C₃ which can be important for high-temperature carbon atmospheres (Aringer et al. 2009). An ExoMol IR line list for C₃ has just been completed (Lynas-Gray et al. 2024). Martin-Drumel et al. (2023) report recent laboratory work on the infrared spectra of C₃, with a combined fit of available infrared and optical laboratory data performed using

the PGOPHER (Western 2017) package; these and other data were used as input for a MARVEL study (Tennyson 2024). Molecular line lists are required for the following hydrocarbon species, in IR for direct retrievals and at shorter wavelengths for atmospheric chemistry modellings (see more in Section 7). C₄H is considered to be important in the upper atmosphere of low-metallicity objects (Bilger, Rimmer & Helling 2013). Allene (CH₂CHCH) and propyne (CH₃CCH) are isomers of one another which have both been detected on Titan (Lombardo et al. 2019; Nixon et al. 2013). Propene has also been observed on Earth (Blake et al. 1996), and is expected on Saturn (Moses et al. 2000). There are some known cross-sections for propene (Bernath et al. 2023), including some hosted by the HITRAN database (Sung et al. 2018), but not a line list.

(v) **PAHs:** can be important for Earth and Titan-like atmospheres (López-Puertas et al. 2013). As previously mentioned, one of the main sources of PAH cross-sections is the NASA Ames PAH data base (Boersma et al. 2014; Bauschlicher et al. 2018; Mattioda et al. 2020),¹⁴ which is tailored for characterizing species in the cold temperatures of the ISM. To be able to fully comprehend the abundance and role of PAHs on exoplanets, there is a need for new PAH opacities to be calculated or measured over a broad parameter space of environmental conditions and easily implementable for retrieval applications. This necessity extends beyond the infrared spectrum, as the availability of temperature-dependent UV cross-sections is quite limited (see Section 8 for the availability of UV PAH photionization and photoabsorption cross-sections).

(vi) **Species relevant to Archean atmospheres:** another special type of exoplanetary atmosphere with special data requirements are archean atmospheres, necessitating line lists for species including HC₃N (Rimmer et al. 2019, 2021).

(vii) **Molecular ions:** Bourgalais et al. (2020) performed laboratory experiments to help identify ions observable by *Ariel* in the upper atmospheres of sub-Neptunes. Their results pointed towards H₃O⁺ and H₃⁺ being the most promising. Partly as a consequence of this study ExoMol provides IR line lists for H₃O⁺ (Yurchenko et al. 2020b) and H₃⁺ (Mizus et al. 2017; Bowesman et al. 2023). The ExoMol data base also provides line lists for a number of other ions including CH⁺ (Pearce et al. 2024), OH⁺ Hodges & Bernath (2017), Hodges et al. (2018) and HeH⁺ (Amaral et al. 2019) covering a very broad wavelength range. Other potentially important ions for which there are no suitable line lists at present include HCO⁺, N₂H⁺, and H₂O⁺, as well as NO⁺ which is the dominant molecular ion in the Earth's ionosphere.

(viii) **Radicals:** such as OH, HO₂, C₂H, CH₂, C₃H₃, NH₂, N₂H₃ are known to be important on Earth (Seinfeld & Pandis 2016), Mars (McElroy & Donahue 1972), Titan (Wilson & Atreya 2004), and other planetary atmospheres (Catling & Kasting 2017). Out of these species, the required molecular data are only in a good shape for OH. There are high quality (accurate and complete) rovibronic data for OH applicable for IR and UV studies (Bernath 2020; Mitev, Yurchenko & Tennyson 2024). Construction of an IR line list for CH₂ is in progress as part of TheoReTs.

(ix) **Line lists are needed** extending into the UV and optical. Extension down to the UV is needed for all major species such as, H₂O, CO₂, CO, OH, CH₄, HCN, N₂, NH₃, C₂H₂, C₂H₄, C₂H₆, H₃⁺, H₂⁺, H₃O⁺, OH⁺, SO, SH, H₂S, SO₂, OCS, S₂, CS. See Section 8 for further discussion on UV photoabsorption and photodissociation data. In some of these cases (such as HCN, NH₃, C₂H₂, C₂H₄, C₂H₆, H₃O⁺, H₂S, SO₂, OCS), data in the optical as well as the

UV is also lacking or only partially covered for line lists which are appropriate up to high temperatures. Extending even just down to the optical region is even more pressing for direct use of these line lists in interpreting and modelling *Ariel* and *JWST* observations. We note that spectroscopic measurements of excited states of some of these species in the UV region are available in the literature, for example for NH₃ from Langford et al. (1998). See Section 2.1.4 for a discussion on how measured data such as these can be used to compute an accurate and complete line list up to high temperatures.

(x) **Isotopologues:** Very recently Lew et al. (2024) used *JWST* to detect isotopologues of CO. Similar studies have been performed on cool stars from the ground (Pavlenko, Yurchenko & Tennyson 2020b; Pavlenko et al. 2020a); such isotope-resolved studies have the potential to provide a lot of extra information about atmospheres. Some atoms have more than one isotope with relatively large terrestrial abundances, e.g. Cl is 75 per cent ³⁵Cl and 25 per cent ³⁷Cl. In other cases, isotopic abundances can be very different from Solar abundances, e.g. Mg and C. The importance of H means that even if deuterium (D) is a minor fraction, D containing molecules such as HD, HOD, and CH₃D can be highly abundant. We note that all these species have different symmetry to the parent (unsubstituted) molecule which means that the spectra of the two species differ significantly. The ExoMol data base provides line lists for HOD (Voronin et al. 2010) and the weak IR spectrum of HD (Amaral et al. 2019), while CH₃D has been considered by TheoReTs (Rey, Nikitin & Tyuterev 2014a). Lines for isotopically substituted species which do not break their symmetry are straightforward to compute given a spectroscopic model for the parent molecule, and this done routinely by ExoMol; methods to improve the accuracy of these line lists have been developed (Polyansky et al. 2017; McKemmish et al. 2024). A list of natural (terrestrial) abundances of various species included in the HITRAN data base can be found online,¹⁵ as well as elemental isotopic compositions from NIST.¹⁶

(xi) **Vibrational modes of molecular clusters:** Köhn et al. (2021) point out that the onset of cloud formation may be observable through vibrational bands of (TiO₂)₄, (TiO₂)₅, and (TiO₂)₆, potentially via the mid-infrared instrument on *JWST* or the extremely large telescope's mid-IR imager, but more complete line-list data are required first. We note that the full quantum chemical computation of line lists for such large clusters is challenging, and so may require computations of vibrational frequencies only, at least as a starting point. There is some discussion on this in Section 2.1.3 'Vibrational frequency calculations'. We note some vibrational data for TiO₂ nanoclusters have recently been computed (Sindel et al. 2023).

3 LINE SHAPES: MOLECULAR AND ATOMIC

3.1 Theoretical approaches to line-shape parameters: molecules

The Voigt profile. In order to simulate a spectrum of a single molecule at given pressure and temperature, three main components are required; line position, line intensity, and line profile. In this section, the latter is reviewed. The most popular line profile used in the majority of atmospheric applications (and beyond) is the Voigt profile. It refers to the so-called 'intermediate' pressure regime and accounts for collision (pressure) and Doppler (thermal motion) broadenings considered as statistically independent processes and

¹⁴<https://www.astrochem.org/pahdb/>

¹⁵<https://hitran.org/docs/iso-meta/>

¹⁶<http://physics.nist.gov/Comp>

has been the standard for high-resolution line-by-line modelling of infrared molecular absorption (Armstrong 1967). The Voigt profile represents a convolution of the associated Lorentzian and Gaussian profiles, representing the collisional and Doppler effects, and tends to these two shapes in the limiting cases of high and low gas densities, respectively. The Voigt profile has no closed analytical form and is often related to the complex probability function. Several special numerical algorithms exist in the literature for efficient evaluation of the Voigt profile (Humbel 1982; Kuntz 1997), see the recent computational and numerical comparison by Zhang et al. (2024); some numerical approaches allow one to take advantage of the convolution of the entire spectrum at once (van den Bekerom & Pannier 2021). While for the Doppler contribution, the corresponding (half) line width γ_D is a simple function of the molecular mass, gas temperature, and the line positions (frequency):

$$\gamma_D = \sqrt{\frac{2N_A k_B T \ln 2}{M} \frac{\tilde{v}_{fi}}{c}}, \quad (1)$$

there is no simple analytic description of the line (half) width γ_L , defining the Lorentzian contribution, at least in the general case. The molecular parameters γ_L strongly depend on the system (the molecule and the perturbing partner), as well as on the gas conditions, i.e. pressure and temperature. Together with the line positions \tilde{v} , transition probabilities (e.g. oscillator strength g_f or Einstein A coefficients), the Lorentzian width (usually half-width-at-maximum, or HWHM) γ_L are an integral part of spectroscopic data bases. They are typically obtained empirically either through direct measurements with different level of parametric modelling or semi-empirically, where a more sophisticated theory tuned to available experimental data is involved such as, e.g. the semi-empirical approaches (Bykov, Lavrentieva & Sinitsa 2004) representing a simplification of the Robert-Bonamy formulae to Anderson-type expressions with fitted correction-factor parameters or modified complex Robert-Bonamy calculations (Ma, Tipping & Boulet 2007) with adjusted atom–atom interaction parameters. Application of fully first-principles methods are currently limited to simple system or low temperatures (Wcislo et al. 2021).

The pressure-broadening of spectral lines corresponding to pure *rotational* (microwave, MW) and *rovibrational* (infrared, IR) transitions is mainly governed by inelastic collisions (De Lucia & Green 1988) and exhibit (except for light perturbers such as hydrogen and helium) strongly pronounced dependence on the rotational quantum number J .

Apart from the line broadening effect, collisions also affect the line positions by introducing the so-called line shift δ . These are also provided by the spectroscopic data bases, especially those focusing on high resolution applications, such as terrestrial, planetary (Sung & Varanasi 2005), Solar, and in some cases stellar, but so far have not featured very much in the low-mid resolution spectroscopy of exoplanets, as would be applicable to the *Ariel* mission. It is also noteworthy that ro-vibrational line shifts are typically smaller than the associated line widths by some orders of magnitude.

In the context of the *Ariel* mission, the temperature and pressure dependencies of line widths are crucial. For Voigt line widths γ (in $\text{cm}^{-1}\text{atm}^{-1}$), the following power law is almost always assumed:

$$\gamma(T) = \gamma_0(T_{\text{ref}}, P_{\text{ref}}) \left(\frac{T_{\text{ref}}}{T} \right)^n \frac{P}{P_{\text{ref}}}, \quad (2)$$

where T_{ref} and P_{ref} are some reference temperature and pressure (e.g. 1 atm and 296 K, respectively). Then the parameters γ_0 (reference value of HWHM) and n (temperature exponents) are tabulated by the data bases for each perturber. This model works quite well for many

molecular systems but for a given set of parameters it can deviate when a description of a large range of temperatures is required.

The Lorentzian (and therefore Voigt) as an isolated line profile model is known to fail in the far wings, always leading to an overestimation of the opacity at high pressure, especially for the systems with closely spaced lines (Chapter IV Hartmann, Boulet & Robert 2008), e.g. in heavier molecules. As a work-around, a cut-off the far wings at some distance from the centre of the line is applied. The common standards are to use a 25 cm^{-1} cut-off, employed by HITRAN, ExoMol, and now also by MAESTRO (Molecules and Atoms in Exoplanet Science: Tools and Resources for Opacities) (Gharib-Nezhad et al. 2024). A detailed analysis of line-wing profiles and cutoffs in the context of exoplanet atmospheres, including the Voigt profile, can be found in Gharib-Nezhad et al. (2024).

Beyond the Voigt line profile. Recent experimental studies powered by the development of experimental techniques in the last few decades have demonstrated the importance of the departure of the line shape description from the simple Voigt profile model, at least for high resolution applications. This motivated the spectroscopic data bases also to provide parameters for more accurate profile models. One of such departures is due to the effect of collisional (Dicke) line narrowing.

The line narrowing can be described either as a reduction of the Doppler component (velocity-changing collisions resulting in molecular confinement) or the dependence of the collisional relaxation rates on the relative molecular speed. In the first case, velocity-changing collisions are often considered as strong (no memory effects, Maxwell-Boltzmann re-distribution of velocities after each collision) and the most frequently used associated profile is that of Rautian & Sobel'man (1966, 1967), although the soft-collision model (light perturbers, many collisions required to modify significantly the active-molecule velocity) developed by Galatry (1961) is used by some researchers too. It is now understood that both mechanisms can be important across any pressure regimes, from very low to very high (D'Eu, Lemoine & Rohart 2002).

In the second case, the speed-dependence (SD) of the collisional relaxation rates dominates the line narrowing and the corresponding models forming the so-called speed-dependent Voigt (SDV) profiles. The most accurate description of the dependence on the absolute absorber's speed (Berman 1972; Pickett 1980) is by the hypergeometric confluent function (hgSDV model), which however, leads to high computational costs. As a more practical approach, a modification of hgSDV based on the mean quadratic speed (Rohart, Mäder & Nicolaisen 1994; Köhler, Mäder & Nicolaisen 1995; Rohart et al. 2007) is used (qSDV model, often referred to as simply SDV), for which an efficient numerical-calculation algorithm is available (Boone, Walker & Bernath 2007).

Both mechanisms, with the velocity-changing collisions and with the speed dependence viewed as independent, are accounted for in 'combined' line-shape models, such as speed-dependent Rautian (SDR) or speed-dependent Galatry (SDG) profiles. The partial correlation of these effects is considered by the partially correlated quadratic-speed-dependent hard-collision profile (pCqSDHCP), developed by Tran, Ngo & Hartmann (2013) (called the Hartmann-Tran profile or HTP profile) and recommended for high resolution spectroscopy in a IUPAC technical report (Tennyson et al. 2014). Parameters for this advanced profile have been incorporated into the HITRAN data base (Gordon et al. 2022) since 2016 for the hydrogen molecule as well as some transitions of water vapour and molecular oxygen. The line narrowing effects, being routinely used in high-resolution terrestrial and planetary applications, have not been

considered in the mainstream exoplanetary spectroscopic studies yet, and likely first requires studies to demonstrate the impact of such line profiles on different atmospheric models.

Another important deficiency of the common line profile methodology used in spectral modelling is due to the breakdown of the isolated lines approximation. This phenomenon, also caused by molecular collisions, is associated with the so-called line-mixing or line-interference effect. While the line narrowing effects are mostly noticeable at lower pressure (well below 1 atm for most gases), line-mixing usually becomes relevant at higher pressure when individual lines start to broaden and overlap. Line-mixing effects can be especially significant in the line wings regions where intensity is never truly zero, and there is always some degree of overlapping with others lines. Because of this effect, the intensity in the wings of a band falls off faster than predicted by the sum of Lorentzians (see figures in Hartmann et al. 2010). To a lesser extent, the troughs between individual lines or branches can also be affected. In practice, as stated above, cross-sections calculations employ sums of Voigt profiles with certain wing cut-offs, say $\pm 25 \text{ cm}^{-1}$ from line centres. Such treatment bypasses a proper account of line-mixing and prevents overestimation of absorption away from band centres which would come from addition of billions of line wings (recall that the wings of the Voigt profile fall off as Lorentzians $\propto \omega^{-2}$ and not exponentially). However, such cut-offs may lead to another non-physical situation, where the calculated cross-sections between strong bands end up being exactly zero. In reality, line-mixing would cause a sub-Lorentzian shape that far enough from strong absorption bands would contribute to continuum absorption (see Section 5 for a discussion on continuum absorption). An in-depth discussion of wing cut-offs is presented in Gharib-Nezhad et al. (2024). An empirical method of far-wing corrections involving χ -factors is discussed in the following sections.

At higher pressure where even line cores significantly overlap, line-mixing can lead to a noticeable intensity redistribution within a branch or an entire band. This is known to happen for closely spaced lines in Q-branches and band heads even at sub-atmospheric pressures, and these features may appear stronger and more narrow than one would expect from the sum of isolated lines. This presents potential interest for more reliable confirmation of molecular species' detection, where features like these are often the most noticeable. The case of very high pressure has been considered before in order to describe the deep venusian atmosphere (Buldyreva, Gennadiev & Filippov 2013; Filippov et al. 2013). In such conditions, the rotational structure is entirely collapsed and the band shape differs significantly from the sum of individual spectral lines. This is relevant to modelling of radiative transfer in hot dense atmospheres.

Proper analysis of line-mixing is complicated, and usually a perturbative approach is taken on a band-by-band basis for the most intense bands. At present, line-mixing is not typically implemented in suites for producing opacities for exoplanetary atmospheric retrievals, although these effects may become more important with newer instruments that can probe high-pressure regions of around 1–10 bar.

Calculations of line widths and shifts. The needs of MW/IR pressure-broadened line widths and pressure-induced line shifts for atmospheric applications motivated an extensive development of theoretical methods. The most developed and commonly accepted hypothesis of the impact approximation completed by various choices for the translational dynamics gave birth to semi-classical (Anderson 1949; Tsao & Curnutte 1962), classical (Gordon 1966), and quantum-mechanical (Baranger 1958c; Shafer & Gordon 1973) approaches. Besides, there are statistical approaches, e.g. Margenau

(1935), whose two-particle static limit is the opposite case to the impact approximation. Static limit works well for low molecular velocities (negligible rate of change of intermolecular interactions) and is applicable at large frequency detunings, i.e. in the far spectral wings which are hardly observable at IR wavelengths. Therefore, approaches based on the impact approximation remain major tools for predicting collisional line-shape parameters. High computational cost and absence of refined potential-energy surfaces (PES) set limits to the use of quantum-mechanical methods as soon as polyatomic/'exotic' molecular pairs and/or high temperatures are concerned.

Quantum-mechanical approaches. The most rigorous method, close coupling (CC), is usually applied to predict parameters of purely rotational transitions at room temperature, and only some studies address hot environments. Such data, provided the vibrational contribution to line-broadening is small, can technically be reused for other lines in the infrared. Certain simplifications of this formalism, such as the coupled-states (CS) approximation (used, for example, in Thibault et al. 2011), the infinite-order sudden (IOS) approximation (Goldflam, Green & Kouri 1977), and the nearest neighbour Coriolis coupling (NNCC) (Yang et al. 2018; Selim, van der Avoird & Groenenboom 2022) can make calculations more manageable while preserving the accuracy in the high-temperature limit for most lines in the band. The main issue of quantum-mechanical approaches at higher temperatures is that the number of rotational functions needed to construct a complete basis grows too fast, making calculations of the scattering matrix impractical. A useful feature of quantum-mechanical approaches is that they allow estimating parameters of beyond-Voigt profiles mentioned above. Semiclassical approaches can provide the Lorentzian component of the profile, and with some extra work, the speed-dependence parameters. If all the parameters of the extended Hartmann-Tran profile are required, one could employ the generalized Hess approach along with CC for the scattering matrix computation. This has been done recently for H₂ and HD with helium as the perturber (Stankiewicz et al. 2021; Wcislo et al. 2021) up to 1000 K.

Semiclassical approaches. The need for accurate potential energy surfaces (PES) and long-time statistics accumulation also disadvantage purely classical computations. As a result, advanced semiclassical approaches are typically employed, such as the formalism of Robert and Bonamy (Robert & Bonamy 1979) and its fully complex implementation (Lynch, Gamache & Neshyba 1996) further supplied by exact trajectories (Buldyreva, Bonamy & Robert 1999), a corrected average over the perturber's states (Antony et al. 2006; Ma et al. 2007) and an account for line coupling (Ma, Boulet & Tipping 2013). In cases where large volumes of line-shape data are to be produced with a minimal CPU cost, the semi-empirical method (Bykov et al. 2004) is used which represents a simplification of the Robert-Bonamy expressions to the Anderson-Tsao-Curnutte forms with a correction factor with empirically fitted parameters. Although some experimental values are necessary, the adjusted model parameters are practically temperature-independent and can be used for calculations at other required temperatures (not too low to keep the validity of the trajectory notion).

Machine learning. Given the high volume of line broadening data that is required to model the effects of various different exoplanet compositions, machine learning appears to provide a practical approach to the problem. Recently Guest, Tennyson & Yurchenko (2024) have completed an initial machine learning study of air-broadening based on data in the HITRAN data base. Studies which look at the effect of changing the broadener are underway.

UV and visible frequency ranges. Spectra which involve transitions between electronic states (i.e. rotation-vibration-electronic or rovibronic transitions), typically between the ground and an excited electronic state, occur, with some exceptions, in the UV and/or visible region. In these cases, the line broadening due to pre-dissociative effects can dominate the collisional (pressure) broadening by some orders of magnitude. These broadening are caused by the associated lifetimes of *quasi-bound* transitions decreased. A new data format has recently been proposed to capture (Tennyson et al. 2023) and use (Yurchenko et al. 2024) the pre-dissociative line broadening in spectroscopic data bases.

In the case of rovibronic transitions between *bound* low-lying vibrational levels of electronic states, available measurements show *no* well pronounced J -dependencies in the collisional broadening of rovibronic transitions. The absence of rotational dependence of the collisional (pressure) broadening means that rotational energy transfer is of minor importance and the broadening parameters are mainly influenced by elastic collisions. For such transitions line widths and line shifts have the same orders of magnitude. As mentioned by Margenau (1936), lines of rovibronic (bound-bound) transitions are broadened and shifted similarly to atomic lines of a similar type and a similar energy jump. Indeed, the first theoretical approaches to pressure-induced line widths/shifts used the model of a classical oscillating radiator whose phase is modified during collision by a random amount, leading thus, via Fourier-integral analysis, to a ‘dispersion’ (Lorentz) profile. For example, Lindholm (1945) and Foley (1946) successfully developed such theories. Foley (1946), in particular, argued that non-adiabatic effects are small for atoms due to large gaps between their electronic levels but can occur for molecular IR transitions because of similar energy differences between the rotational levels of the radiator and perturber. Detailed analyses of some representative one-term interactions (dipole–dipole, quadrupole–quadrupole, and dispersive) in the framework of phase-shift theory were made by Mizushima (1951) who also considered velocity averaging and derived line-width and line-shift expressions (intended for microwave transitions) with explicit temperature dependencies. These expressions served as a basis for the power law of equation (2). Later, Hindmarsh, Petford & Smith (1967) accounted additionally for short-range repulsive forces via a Lennard-Jones 12-6 potential model but for simplicity conducted their derivation with the mean-thermal-velocity approximation. Temperature dependence of collisional broadening and shifts of atomic and molecular rovibronic lines has been also addressed by Cybulski et al. (2013). Quantum-mechanical adiabatic approaches were initiated by Jablonski (1937, 1945) who assumed the gas to be a very large ‘molecule’ and calculated the stationary states of internal motion. A unified model relying on the Franck-Condon principle and containing both impact and quasi-static limits was proposed by Szudy & Baylis (1975). The authors retrieved the expressions of Lindholm (1945) and Foley (1946) in the classical limit and suggested also a first-order correcting term leading to line shapes with an asymmetry effect.

When there is an interaction with one or more dissociative states, i.e. pre-dissociations, the broadening can vary significantly due to a variation in the lifetimes of the excited states. The broadening in this case is a manifestation of such interaction with the continuum. The extent of the line broadening (or lifetime of the state in question) derives from the strength of the pre-dissociation, i.e. the strength of the coupling between the bound excited states and the dissociative states. Typically non-radiative lifetimes of electronically excited states are ca. 10^{-8} s which result in widths of 5×10^{-4} cm $^{-1}$. For lifetimes of 10^{-13} s the linewidth will be 50 cm $^{-1}$ which will result

in the rotational structure disappearing. For non-radiative lifetimes shorter than 10^{-15} s, the vibrational structure disappears and will resemble a continuum. These types of pre-dissociation-induced line broadenings have been well documented experimentally for over half a century (see chapter 7.4.2 in Léfeuvre-Brion & Field 2004).

3.2 Theoretical approaches to line-shape parameters: atoms

The broadening of alkali lines by rare gases is a problem which has been extensively investigated in experimental and theoretical work (Allard & Kielkopf 1982; Burrows & Volobuyev 2003; Allard, Spiegelman & Kielkopf 2016; Allard et al. 2019, 2023, 2024; Peach et al. 2020). A theory of spectral line broadening has been developed to calculate neutral atom spectra given the interaction and transition moments for relevant states of the radiating atom with other atoms in its environment. Within this framework it is possible to compute the complete spectrum with a unified approach. Unlike impact theories of line broadening which predict a Lorentzian line or the approximation methods of Szudy & Baylis (1975, 1996) the unified theory of Allard et al. (1999) provides an accurate spectrum from the line centre to the extreme wing. Complete details and the derivation of the theory are given by Allard et al. (1999). The approach is based on quantum theory of spectral line shapes by Baranger (1958a, b) with an adiabatic representation to include the degeneracy of atomic levels.

The spectrum $I(\Delta\omega)$ can be written as the Fourier transform (FT) of the dipole autocorrelation function $\Phi(s)$,

$$I(\Delta\omega) = \frac{1}{\pi} \operatorname{Re} \int_0^{+\infty} \Phi(s) e^{-i\Delta\omega s} ds, \quad (3)$$

where $\Delta\omega$ is the angular frequency difference from the unperturbed centre of the spectral line. The autocorrelation function $\Phi(s)$ is calculated with the assumptions that the radiator is stationary in space, the perturbers are mutually independent, and in the adiabatic approach the interaction potentials give contributions that are scalar additive. This last simplifying assumption allows the total profile $I(\Delta\omega)$ to be calculated when all the perturbers interact, as the FT of the N^{th} power of the autocorrelation function $\phi(s)$ of a unique atom-perturber pair. Therefore,

$$\Phi(s) = (\phi(s))^N, \quad (4)$$

that is to say, the interperturber correlations are neglected. For a perturber density n_p ,

$$\Phi(s) = e^{-n_p g(s)}, \quad (5)$$

where decay of the autocorrelation function with time leads to atomic line broadening. When n_p is high, the spectrum is evaluated by computing the FT of equation (5). The real part of $n_p g(s)$ damps $\Phi(s)$ for large s but this calculation is not feasible when extended wings have to be computed at low density because of the very slow decrease of the autocorrelation function. An alternative is to use the expansion of the spectrum $I(\Delta\omega)$ in powers of the density described in Royer (1971). For the implementation of alkali lines perturbed by helium and molecular hydrogen in atmosphere codes, the line opacity is calculated by splitting the profile into a core component described with a Lorentzian profile, and the line wings computed using an expansion of the autocorrelation function in powers of density. The impact approximation determines the asymptotic behavior of the unified line shape correlation function. In this way the results are applicable to a more general line profile and opacity evaluation for the same perturbers at any given layer in the photosphere or planetary atmosphere.

In Allard et al. (2019) the use of a density expansion in the opacity tables is reviewed. When the expansion is stopped at the first order it is equivalent to the one-perturber approximation. Previous opacity tables were constructed to third order allowing us to obtain line profiles up to $N_{\text{He}}/N_{\text{H}_2} = 10^{19} \text{ cm}^{-3}$. The new tables are constructed to a higher order allowing line profiles to $N_{\text{He}}/N_{\text{H}_2} = 10^{21} \text{ cm}^{-3}$.

3.3 State-of-the-art – data availability

3.3.1 Molecular line profiles

Voigt parameters: it is now recognized in the (exo-)atmospheric community that Earth's conditions with the oxygen and nitrogen as the main collisional broadeners are not default ones, especially for hot Jupiter exoplanets, where hydrogen and helium dominate molecular collisions. Although, as noted below, broadening parameters are becoming available for a small number of systems which deviate from the Voigt profile, the vast majority of available data are for Voigt broadening parameters. Even so, collisional broadening parameters which are required for computing Voigt profiles are missing or incomplete for a larger number of the relevant molecules (see Section 2) and are therefore in practice substituted by crude 'guesstimates' when generating molecular opacities for the subsequent use in the radiative transfer calculations. Indeed, computing opacities without line profiles is meaningless, i.e. 'something' is always better than 'nothing', but the errors involved are usually difficult to quantify. The impact of using incorrect broadening parameters was shown by Niraula et al. (2022, 2023) to impact retrieved exoplanet properties.

HITRAN now includes different broadening species applicable to planetary atmospheres, as shown in Table 7. The addition of these parameters to the data base is carried out by searching the literature for accurate experimental measurements, which can be fit to a rotationally dependent function (see Wilzewski et al. 2016; Tan et al. 2019, 2022). This enables the functions to be applied to the high-temperature line lists of data bases such as ExoMol and HITEMP. These broadeners are representative of the typical species in the (exo-)atmosphere under study: a mix of H₂ and He for gas giants, CO₂ for rocky planets, and H₂O for tropical atmospheric scenarios (or water-dominated atmospheres). The temperature dependence of line broadening parameters has also recently been under investigation. Indeed line shapes are described by different parameters such as the pressure broadening and pressure shift coefficients and their respective dependence on temperature; this applies to both molecules and atoms. The species and broadeners for which Voigt broadening parameters are currently available in the ExoMol data base can be found online.¹⁷ A complete set of air-broadening parameters have been generated using machine learning (Guest et al. 2024) and a large number of broadening parameters based on the theory of Buldyreva, Yurchenko & Tennyson (2022) have also been added recently.

Empirical χ -factor corrections: Solar System applications have shown that the Voigt profile, tending to a Lorentz profile with increasing pressure, is not applicable for high-pressure conditions where a sub-Lorentzian profile needs to be used (Bézard et al. 2011). The pressure is so high in the lower layers of the atmosphere that the line-interference (intensity-transfer, also called line mixing) effects, in particular line (and, therefore, band) wings, need to be accurately modelled. For now, the band shapes obtained in the impact-approximation (Markov) limit of collisional-broadening theory (which is invalid for large detunings from the band centre)

are empirically corrected via so-called χ -factors, as, e.g. Tonkov et al. (1996) and Bézard et al. (2011) for CO₂ on Venus and the recent confirmation by laboratory measurements (Mondelain et al. 2022, 2023). Empirical χ -factor corrections were also used to model far-wing absorption for CO₂ at high pressures and temperatures (Tran et al. 2011; Cole et al. 2023), CH₄ (Tran et al. 2011), and H₂O (Tran et al. 2011). The artificial χ -factors as well as the forced re-normalization procedure in the impact-approximation models become unnecessary if a non-Markovian approach operating with a frequency-dependent relaxation matrix and a symmetric metric in the line space is employed (Buldyreva & Daneshvar 2013; Filippov et al. 2013), but the collision-induced absorption (while relevant) should be correctly modelled; see Section 5. Even for correctly modelling methane absorption in the cold ice giant atmospheres, for example, having more precise line profiles can be important.

Double-power law: Gamache & Vispoel (2018) suggested to correct equation (2) by adding a supplementary power term (the so-called double-power law), with an analogous two-term expression for the shifts, in order to model line widths and shifts over large temperature intervals with the same parameters' sets. So far, this has been applied to the H₂O-CO₂ collisional system, with respective parameters published in Régalias et al. (2019), to CO₂-H₂O reported in Vispoel & Gamache (2024), and to He-broadening of H₂ and HD (Wcislo et al. 2021; Stankiewicz et al. 2021).

The importance of laboratory measured broadening parameters: as mentioned earlier in this section, accurate laboratory broadening measurements are critical for the production of rotationally dependent broadening parameters, many of which have been compiled in the HITRAN data base (see Table 7). A few examples of laboratory measurements of broadening coefficients to study Earth, Mars, Jupiter, and other planetary compositions for key absorbers include Smith et al. (2014), Sung et al. (2020), Devi et al. (2016), and Lavrentieva & Dudaryonok (2020). Available measurements that are relevant to high-temperature atmospheres, are not all necessarily relevant to high-metallicity atmospheres (e.g. Baldacchini et al. 2001; Goldenstein, Jeffries & Hanson 2013; Gharib-Nezhad et al. 2019; Yousefi et al. 2021), or are only limited to a small spectral region. Further details can be found in Hartmann et al. (2018b). Nevertheless, such measurements in the laboratory are an important component of compiling broadening parameters for a large range of species, spectral regions, broadening species, temperatures, and pressures.

3.3.2 Atomic line profiles

Na and K: the resonance line doublets of atoms such as Na and K can have a large impact on the spectra of exoplanets and Brown Dwarfs, as demonstrated by, for example, Allard et al. (2019) and Whiteford et al. (2023). Such strong lines as these require detailed computations to model the line profile and wings far from the line centre. Typically works such as Allard et al. (2016) for K perturbed by H₂,¹⁸ Allard et al. (2024) for K perturbed by He,¹⁹ Allard et al. (2019) for Na perturbed by H₂,²⁰ Allard et al. (2023) for Na perturbed by He,²¹ or Burrows & Volobuyev (2003) for Na and K perturbed by a mixture of H₂ and He, are used in the computation of opacities for exoplanet and Brown Dwarf atmospheres. See also Sharp & Burrows (2007)

¹⁸<https://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A21>

¹⁹<https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/683/A18>

²⁰<https://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/628/A120>

²¹<https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/674/A171>

¹⁷https://exomol.com/data/data-types/broadening_coefficients/

for empirical estimates used for other atomic (and molecular) line broadening parameters.

For the strongest atomic lines (K, Na, He) individual line absorption can dominate the entire observed spectroscopic region and very accurate shapes are mandatory, as described above. For others (Fe, Ca, Mg etc.), the atomic features are less intense and can be very dense, comparable to the molecular lines. In this case, the spectra are less sensitive to the individual lines. We do not go in detail here on these other species, and instead focus only on Na and K which are most relevant to high-temperature exoplanet atmospheres due to their extensive line wings.

3.4 Data used by retrieval codes

As previously highlighted in this section, the vast majority of atmospheric modelling and retrieval codes use the Voigt profile as the current standard for temperature- and pressure-broadened opacities.

The broadening parameters used for computing opacities (either on-the-fly or pre-computed; see Section 4) will have an impact on the resulting radiative transfer models (e.g. Gharib-Nezhad & Line 2019; Anisman et al. 2022b). It is important to compute (or choose, if pre-computed) opacities which are relevant for the atmosphere which is being modelled, both in terms of temperature and pressure, and also what the main broadening species are (e.g. H₂/He-dominated, H₂O-dominated, and CO₂-dominated atmospheres). Often broadening data are supplied alongside line lists, which may then be typically used in the computation of opacities. One of the main differences between opacity computations is the extent out to which the line wings are calculated from the line centre (see for example, Gharib-Nezhad et al. 2024). The ExoMolOP data base (Chubb et al. 2020b) employs the line profiles of Allard et al. (2016, 2019) in computing the resonance line opacities of K and Na, respectively, broadened by H₂. For the molecular opacity Voigt line profiles in the ExoMolOP data base, averaged-*J* broadening parameters for H₂, and He broadening were used for those species with available data at the time, as outlined in table 2 of Chubb et al. (2020b). The Voigt line wings were computed up to 500 Voigt widths from the line centres, up to a maximum cutoff of 25 cm⁻¹. The EXOPLINES data base (Gharib-Nezhad et al. 2021) uses a Voigt profile with a variable line-wing cutoff depending on the pressure (30 cm⁻¹ for *P* ≤ 200 bar and 150 cm⁻¹ for *P* > 200 bar), but note the lack of available broadening coefficients for the species they compute opacities for (including a number of metal hydrides). They therefore estimated parameters to use in a similar way to Chubb et al. (2020b), based on the similarity between molecular symmetry or dipole moments that these absorbers have with the available Lorentz coefficients. Some works, such as Gharib-Nezhad & Line (2019) and Anisman et al. (2022b) use opacities which were computed assuming H₂O-broadening parameters, extracted from the HITRAN2020 data base (Gordon et al. 2022). The opacities computed for the Helios-r2 retrieval code (Kitzmann et al. 2020; Grimm et al. 2021) are computed using a Voigt profile. The impact of the spectral line wing cut-off has been recently reviewed by Gharib-Nezhad et al. (2024), with the recommendation for the following line wing cut-offs to be used for current computations using the Voigt profile: 25 cm⁻¹ for *P* ≤ 200 bar and 100 cm⁻¹ for *P* > 200 bar.

3.5 What's being worked on?

Machine learning approaches: so far, the theoretical methods used for line broadening are very limited in what they can realistically

provide, in terms of the molecular species, spectral ranges and temperature coverage. Machine learning (ML) represents an attractive alternative to fill the existing data gaps in broadening data due to its relative simplicity, which has been recently explored to produce air broadening data in the ExoMol data base (Guest et al. 2024). Considering the success of ML in a wide range of applications and the fast progress in the development of ML techniques, the work in this direction will continue.

(Vib)rotational line-shape parameters: the extreme conditions experienced by most observable exoplanets (high temperatures and huge levels of ionization) lead to the formation of ‘exotic’ species whose spectroscopic parameters are often impossible to measure in standard laboratory experiments. A significant number of required perturbers and non-existing empirical PESs to practice ‘standard’ theoretical approaches described in Section 3.1. Therefore, for a rough *J*-independent theoretical estimate for IR/MW line width (in cm⁻¹ atm⁻¹), the following expression for the Lorentzian HWHM has been recently suggested (Buldyreva et al. 2022):

$$\gamma_L = 1.7796 \times 10^{-5} \frac{m}{(m-2)} \frac{1}{\sqrt{T}} \sqrt{\frac{m_a + m_p}{m_a m_p}} d^2, \quad (6)$$

where only the index *m* = 2(*q* − 1) of the leading long-range interaction *V* ∼ *R*^{−*q*}, the active- and perturbing-molecule masses *m_a*, *m_p*, and the kinetic diameter of the molecular pair *d* = (*d_{a + *d_p*)/2 are required at the input temperature *T*. Besides the neutral active molecules, equation (6) holds also for ionic absorbers. It has been employed to produce line-width data (Buldyreva et al., in preparation) for more than fifty active species (and their isotopologues) self-perturbed and perturbed by He, Ar, O₂, H₂, N₂, CO, CO₂, NO, H₂O, NH₃, and CH₄ at the reference temperature of 296 K. These new data are progressively integrated into ExoMol as new files of ExoMol Diet (Barton et al. 2017) and into the definition.def files for all line lists of a considered molecule.}*

Rovibronic line-shape parameters: the same goal of providing at least approximate values of line-shape parameters for electronic transitions in hot-temperature active molecules concerned by *Ariel* has initiated recently a study (Buldyreva et al. 2024) revisiting classical phase-shift theory. Besides a general analysis for arbitrary molecular pairs (including the points on the temperature dependence and Maxwell-Boltzmann averaging over relative velocities), improvements of the potential and trajectory descriptions were attempted. Detailed calculations, based on specially computed state-of-the-art PESs, were done for some representative molecular pairs (NO and OH perturbed by N₂ and Ar, selected because of available experimental data). As intended, for the considered molecular partners the calculated line-shape parameters were found to be consistent with measurements within 30–40 per cent in wide temperature ranges (300–3000 K). Although this phase-theory approach requires knowledge of the isotropic interaction PESs associated with the excited and ground radiator’s states, it has a much lower computational cost with respect to quantum-mechanical methods which, in addition, become unpractical at high temperatures.

3.6 Data needs: what's missing and urgent?

In general, we would advocate for a consistent set of parameters which cover an adequate spectral range for each species of importance. This includes species which require new or improved line lists in Section 2.4. The need for the accurate treatment of line broadening effects in atmospheric retrievals is known to play an important role in atmospheric models, and more so with emerging observational

facilities, regardless of if they are space-based (lower resolution) such as *JWST* and *Ariel* or ground-based (high resolution) such as the VLT or ELT (Hedges & Madhusudhan 2016). Studies such as Gharib-Nezhad & Line (2019), Niraula et al. (2022), and Anisman et al. (2022b) highlight the impact of using different broadening species for computing spectral line shapes on model atmospheric spectra, indicating that incorrect line shapes will likely lead to biases when analysing observed spectra. Gharib-Nezhad & Line (2019) find that emission spectra are particularly affected by incorrect broadening parameters, with the differences observed highly dependent on the pressure-temperature structure of the atmosphere. There will be an impact on the radiative balance and thermal structure of the atmosphere. In the frame of the *Ariel* mission, the requirement of a consistent set of parameters which cover an adequate spectral range for each species of importance is a challenging request as *Ariel* aims to observe about 1000 exoplanets ranging from Jupiters and Neptunes down to super-Earth size in the visible and the infrared with its meter-class telescope (Edwards et al. 2019b). This implies very different broadeners and pressure and temperature conditions. Line shapes accurate at high temperature, up to 2500 K, are high up on the list. This includes temperature exponents of the line parameters as temperature-dependent line mixing effects for the main molecular species at least. The most important broadeners to be considered remain the usual suspects; H₂, He, CO₂, and H₂O.

(i) **Species occurring in JWST studies:** see the first point in Section 2.4, with line broadening parameters also required up to high temperatures for the listed species.

(ii) **Species relevant to lava planets:** the broadening for molecules important in lava planet environments require very different types of line-broadening to other commonly studied planets, which are generally not currently available (see for example, Tennyson & Yurchenko 2017). This includes species such as KOH, NaOH, SiO₂, CaOH, FeO, MgO, MgOH (Schaefer et al. 2012; Mahapatra et al. 2017; Tennyson & Yurchenko 2017), whose spectra will be broadened by exotic molecules.

(iii) **H₂ and He broadeners at high temperatures:** there has been significant progress recently in the provision of line broadening parameters for H₂/He dominated atmospheres such as of hot Jupiters or hot Neptunes. Even so, it should be acknowledged that while many species in HITRAN have broadening parameters for terrestrial-relevant molecules, H₂ and He broadening parameters are not available for some important species such as CH₄.

(iv) **N₂ broadening:** it is known from studies of the Solar System that broadening by N₂ is required for the remote sensing of Titan (He et al. 2022b). Currently, N₂ is not separated from ‘air’ in HITRAN, but is included as a broadening gas for many absorption cross-sections included in HITRAN that have been observed in Titan’s atmosphere.

(v) **Species relevant to heavy atmospheres:** the availability of broadening data with species such as CO₂ and H₂O as broadeners is also relatively limited (see e.g. Table 7).

(vi) **Rotational- and vibrational-dependence:** while the rotational (*J*)-dependence is often not known for many species (see e.g. Gharib-Nezhad et al. 2021), the vibrational dependence is even less studied but generally considered to be less important, see Guest et al. (2024) for example.

(vii) **Beyond Voigt profiles:** introducing a new line profile, such as Hartmann-Tran (see Section 3.1), implies introducing new line parameters. This complicates the release of parameters and recipes to the community. Efforts are made, and for instance,

HAPI²² (Kochanov et al. 2016) enables any user to choose a set of adequate line parameters depending on the atmospheric conditions of their spectra. Nevertheless, issues arise when the available parameters do not entirely cover the required spectral range and different data sets need to be combined. This results in a lack of traceability and poor reliability on the retrievals’ results. We would therefore advocate for a consistent set of parameters which cover an adequate spectral range. Note that the various representations of the profiles are not orthogonal fits so the parameters cannot be used reliably in other functional forms.

(viii) **Line mixing:** A recent overview of line mixing, which causes potentially large deviations from a Voigt profile at high pressures, can be found in Gharib-Nezhad et al. (2024). We are not aware of any exoplanetary models which currently allow for the effects of line mixing, but these effects may become more important with newer instruments that can probe high-pressure regions of around 1–10 bar.

(ix) **Deuterated species:** deuterated molecular species are targeted in the (exo-)planetary community to infer planetary evolution. Typical targets for these kinds of investigation are hydrocarbons and water: C₂HD, CH₃D, and HDO (Villanueva et al. 2022) all have the property that they have different symmetry to their parent isotopologue. Broadening parameters for these species are important but the change of symmetry means the usual practice of transferring broadening parameters between isotopologues will not work for these cases.

(x) **Atomic species:** line parameters for atomic species are generally not readily available (with the previously noted exceptions of the strong Na and K doublets broadened by H₂ and He), which can lead to uncertainties in the calculated cross-sections. As shown in Grimm et al. (2021), the use of a Voigt profile for atomic lines is not always suitable. For instance the wings of autoionization lines are more appropriately described by a so-called Fano profile (Fano 1961), which decreases much faster than a Voigt profile. Using a Voigt profile for these lines will result in an overestimate of the absorption, creating an artificial continuum. Other problematic lines for atomic species are resonance lines, where using a normal Voigt profile can also lead to over- or underestimated absorption.

(xi) **Limitations of experimental studies on some species:** as noted in Section 2.1.2 (high-temperature experimental measurements) experimental measurements can be particularly challenging for reactive (or toxic) species, especially at high temperatures, which can limit the availability of parameters. It is therefore not uncommon for some spectroscopic parameters, such as pressure-broadening (Tan et al. 2022), to be based only on limited laboratory measurements for some molecules. For example, inorganic salts are very difficult to sublime and keep in the gas phase. These molecules, where possible, could be targets of theoretical studies instead. The lack of the line shape data also means the lack of understanding of their importance on the atmospheric characterization. More work, both experimental and theoretical is required.

4 COMPUTED CROSS-SECTIONS AND OPACITIES

Line lists (see Section 2) give all the information required (such as upper and lower energy levels, transitions, and typically either Einstein-A coefficients or intensities at a reference temperature) to generate a cross-section at a given temperature and pressure. Line lists will

²²<https://hitran.org/hapi/>

have a maximum temperature up to which they are considered complete; cross-sections computed above these temperatures will have opacity missing. This is because hot band transitions between energy levels of higher energy than are populated for the maximum line list temperature will not be taken into account. When computing cross-sections various choices need to be made, such as what line list, line profile, line-wing cutoff, and broadening parameters to use (see Sections 2 and 3). These will partly be determined by the requirements of the cross-sections being computed: will they be used for modelling Earth-like planets, in which case a line list such as HITRAN might be the most appropriate, or hotter exoplanets, in which case a line list computed or measured up to high temperatures is more appropriate, such as those provided by data bases such as HITEMP (Rothman et al. 2010), ExoMol (Tennyson et al. 2020), or TheoReTs (Rey et al. 2016a). If the cross-sections are for modelling or retrieving atmospheric properties of a hot gas giant exoplanet, then the atmospheric composition will be typically dominated by H₂ and He. The choice of broadening parameters in Section 3 will thus be H₂ and He for such atmospheres, whereas for a planet with a heavier atmosphere, heavier broadening species such as H₂O or N₂ will be more appropriate. Partition functions are also required for computing cross-sections; these are typically included as part of a line list (see Section 2), with tools such as TIPS (Gamache et al. 2021) available for computing partition functions for the HITRAN2020 data base. Studies such as Niraula et al. (2022, 2023) highlight how different choices, including line lists, broadening coefficients, and far-wing behaviours, can impact interpretations of observed spectra. Niraula et al. (2023) explore the impact of opacity choices on the atmospheric properties of the *JWST* NIRSpec/G395H transmission spectra of WASP-39 b (Alderson et al. 2023). Both Niraula et al. (2022) and Niraula et al. (2023) conclude that the incompleteness and inaccuracy of line lists is the biggest issue in the accurate retrieval of atmospheric properties from observations. Niraula et al. (2022) find strong biases due to incorrect line broadening assumptions, with the effects due to incomplete knowledge of far line wings greater for super-Earths than warm-Jupiters. They find the strongest biases, however, are due to using a line list which is incomplete at the atmospheric temperature being probed (i.e. using HITRAN instead of HITEMP or ExoMol for a hot Jupiter exoplanet atmosphere). Villanueva et al. (2024) present comparison tests designed for the exoplanetary community, in order to identify the effects of different input data choices, such as opacity format and line list source.

Opacity files are typically provided as either: (1) high-resolution cross-sections, (2) sampled cross-sections, or (3) correlated-k coefficients, also known as k-tables. The general process is to compute high-resolution cross-sections (typically with a grid spacing of around 0.1 cm⁻¹ or 0.01 cm⁻¹, or $R = \frac{\lambda}{\Delta\lambda} \sim 1000\,000$) for a grid of temperatures and pressures (typically spanning pressures of at least $\sim 1 \times 10^{-5}$ –100 bar, and temperatures ~ 100 K–3000 K), and then, usually for reasons of computational feasibility, to either sample these cross-sections at a lower resolution ($\frac{\lambda}{\Delta\lambda} \sim 10\,000$ –20 000), or compute k-tables at $\frac{\lambda}{\Delta\lambda} \sim 300$ –5000, if the application is for lower resolution applications such as characterizing *Ariel* or lower-resolution *JWST* observations. These resolutions are approximately equivalent to one another for achieving the same accuracy when used in an atmospheric modelling or retrieval code. The general principle of k-tables is to order spectral lines within a given spectral bin, producing a smooth cumulative distribution function to represent opacity, which can then be more efficiently sampled than cross-sections being sampled without any ordering of the spectral lines, with less loss of opacity for the same resolving power (see for

example, Min 2017; Chubb et al. 2020b; Leconte 2021, for further details).

Super-lines: very large line lists can contain billions of lines between millions of energy level states, for example the latest ExoMol CH₄ line list consists of over 50 billion transitions between 9 million states (Yurchenko et al. 2024d). The computation of opacities from such large line lists can benefit from techniques such as the super-lines method (Rey et al. 2016a; Yurchenko et al. 2017; Tennyson et al. 2020), which yields a vast improvement in computational speed when computing high-resolution cross-sections. Either line intensities can be computed at a given temperature, and then the intensities of all lines within a specified spectral bin summed together to create a so-called super-line. If a high enough resolving power, such as $R = \frac{\lambda}{\Delta\lambda} \sim 1000\,000$, is used for the creation of the super-lines then the overall opacity will be conserved (Yurchenko et al. 2017; Chubb et al. 2020b; Tennyson et al. 2020). Alternatively, some line lists, such as the CH₄ line lists of ExoMol (Yurchenko et al. 2017) and TheoReTs (Rey et al. 2014b, 2016a), are already partitioned into a large set of relatively weak lines and a small set of important, stronger lines. When computing opacities, the weaker lines can be combined into a set of super-lines (or effective lines as done for CH₄ in HITEMP; Hargreaves et al. 2020), with broadening of the stronger lines treated individually. Irwin et al. (2019) employed a similar ‘pseudo continuum’ approach when employing the NH₃ line list of Coles et al. (2019b) to analyse the visible spectrum of Jupiter, finding a great increase in efficiency with very little loss of accuracy.

4.1 State-of-the-art – data availability

There are some programs which have been developed by line list producers to generate cross-section data from line lists, such as ExoCross²³ (Yurchenko et al. 2018d) and pyExoCross²⁴ (Zhang et al. 2024) (ExoMol), and HAPI (HITRAN)²⁵ (Kochanov et al. 2016). Other tools have been developed by line list users, such as HELIOS-K²⁶ (Grimm & Heng 2015), Exo-k²⁷ (Leconte 2021), RADIS²⁸ (Pannier & Laux 2019; van den Bekerom & Pannier 2021), and others (Min 2017). Various data bases are available which have made use of tools such as these to compute opacities. Each will have their own set of assumptions and choices used when computing the opacities, depending on the intended applications: some data bases provide high resolution cross-sections and some sampled cross-sections or k-tables (see the introduction to this section), often formatted for direct use in a particular atmospheric retrieval or modelling code. Some codes, which employ a so-called line-by-line method, work directly from line lists, and so do not require these opacity files. In such an approach assumptions about line broadening are made by the user at the time of running the code and so it can be considered to be more flexible, however it can become computationally unfeasible for atmospheric retrievals which cover a large range of pressures, temperatures, and wavelengths. Table 10 gives a non-exhaustive list of opacity data bases employed by typical codes used to compute models or run retrievals relevant for the *Ariel* space mission, along with other applications. Some additional notes

²³<https://github.com/Trovemaster/exocross>

²⁴<https://github.com/ExoMol/PyExoCross>

²⁵<https://hitran.org/hapi/>

²⁶<https://github.com/exoclime/HELIOS-K>

²⁷https://perso.astrophy.u-bordeaux.fr/~leconte/exo_k-doc/index.html

²⁸<https://github.com/radis/>

on these data bases are given in Section 4.2. It is important, although not always the case, for modelling and retrieval studies to report on the opacities they use and either cite or explain the assumptions that went into computing those opacities. This allows for traceability and for analyses to be reproducible.

4.2 Data used by retrieval codes

Molecular opacities (cross-sections and k-tables) are now included in many radiative transfer codes and associated libraries, such as those listed in Table 2. The opacity data bases listed in Table 10 are available online and although some are formatted with specific retrieval or modelling codes in mind, they can generally be adapted for more general use or for different codes. ExoMolOP (Chubb et al. 2020b) has k-tables and cross-sections for currently around 80 species in the ExoMol data base formatted for direct input into TauREx3 (Al-Refaie et al. 2021), ARCiS (Ormel & Min 2019; Min et al. 2020), NEMESIS (Irwin et al. 2008), petitRADTRANS (Mollière et al. 2019) (see Table 2). The EXOPLINES (Gharib-Nezhad et al. 2021), Gandhi2020 (Gandhi et al. 2020), MAESTRO (Batalha et al. 2022), and DACE (Grimm et al. 2021) data bases/compilations all contain high-resolution cross-sections for various pressures and temperatures. These can be sampled down to a smaller desired resolution for practical use, or converted to k-tables. Various tools currently exist for this, including Exo-k²⁹ (Leconte 2021), with more tools expected to be become openly available in the near future. We note there are various file formats used for storing opacity data which are often different for different retrieval codes; popular choices include HDF5 (Mollière et al. 2019; Al-Refaie et al. 2021), pickle (Al-Refaie et al. 2021), or FITS (Min et al. 2020).

The need to interpret observational spectra covering a wide range of atmospheric conditions robustly and benchmark them across various studies inspired the creation of the MAESTRO (Molecules and Atoms in Exoplanet Science: Tools and Resources for Opacities) data base. MAESTRO is a NASA-supported, open opacity service accessible to the community through a web interface.³⁰ Primary aims of the MAESTRO project are to incorporate the most up-to-date line lists, establish community standards for computing opacity data (see e.g. Gharib-Nezhad et al. 2024), and offer insights and guidance on assumptions and limitations regarding data relevancy and completeness, particularly concerning different atmospheric compositions. The overall goal is to create one uniform and standard data base for opacities. MAESTRO currently hosts high-resolution data from various sources such as EXOPLINES (Gharib-Nezhad et al. 2021) and ExoMolOP (Chubb et al. 2020b), which span a large range of pressures, temperatures, and wavelengths. The ExoMolOP data hosted by the MAESTRO data base are the high-resolution cross-sections which were used to compute the k-table or sampled cross-section files mentioned above. There is an option for opacity-producers to submit data to MAESTRO via GitHub.³¹

We note the importance of checking opacity files for their original line list source to check their accuracy, spectral coverage, and see what temperature they are suitable to be used up to; see Section 2 for a discussion of completeness of the line lists for different species, which depends on the temperature up to which a line list is considered complete.

Table 10. An overview of some typical opacity data bases designed for the (exo)planetary atmosphere community.

Data base	Types of data	Reference	Link
DACE	Many molecular and atomic cross-sections, 0.01 cm ⁻¹ spacing	Grimm et al. (2021)	https://dace.unige.ch/opacityDatabase/
ExoMolOP	Sampled cross-sections and k-tables for many molecules	Chubb et al. (2020b)	https://exomol.com/data/data-types/opacity/
EXOPLINES	High-resolution cross-sections for selected species	Gharib-Nezhad et al. (2021)	https://doi.org/10.5281/zenodo.4458189
Gandhi2020	High-resolution cross-sections for six molecules, 0.01 cm ⁻¹ spacing	Gandhi et al. (2020)	https://doi.io/mgnw5?view_only=5d58b814328e4600862ccfae4720acc3
MAESTRO	High-resolution cross-sections from various sources	Batalha et al. (2022)	https://science.data.nasa.gov/opacities/

²⁹https://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/index.html

³⁰<https://science.data.nasa.gov/opacities/>

³¹<https://github.com/maestro-opacities/submit-data>

4.3 What's being worked on?

Opacities need to be updated periodically as new line lists become available or are updated; work is in progress to keep these data bases up-to-date, including adding important isotopologues to ExoMolOP. The MAESTRO data base is also expanding, with new species and isotopologues to be added in due course. With existing instruments such as HST/UVIS and potential future instruments such as the Habitable Worlds Observatory (HWO), comes the requirement for opacity data which spans into the UV region, starting around 0.1–0.2 μm . Work is ongoing to compute opacities down to these wavelengths for the species which already have some UV data available, and for future line lists which are in progress. Such opacities will be incorporated into data bases such as ExoMolOP and MAESTRO.

4.4 Data needs: what's missing and urgent?

(i) **External updates and advances:** as mentioned at the start of this section, there are many variables and assumptions that are made when computing opacities. As new and improved data become available (line lists, broadening parameters, theoretical knowledge), then opacities will ideally need to be recomputed to keep to date with the latest advances. The requirements of new instruments will also have an impact here; opacities for use in characterizing atmospheres observed with *JWST*, for example, need to be at higher resolution than those for use in characterizing observations of the same planets using *HST* or *Spitzer*. Theoretical advances in line shape theory could also impact new opacities. As mentioned above, opacities which extend into the UV are also needed.

(ii) **Heavy and other atmosphere applications:** a focus on heavier atmospheres will require opacities tailored differently (i.e. different broadening parameters) to those for lighter gas giant atmospheres. In addition, stellar atmospheres also have their own requirements (e.g. Cristallo et al. 2007).

(iii) **Isotopologues:** although there are exceptions and updates are being made, opacities and line lists can be focused on the main isotopologues of a species only. For some species, however, isotopologues are more important than in others; for example natural elemental abundances of $^{79}\text{Br}/^{81}\text{Br}$ and $^{35}\text{Cl}/^{37}\text{Cl}$ require molecules containing these elements to be formed from cross-sections combined from a combination of the two main isotopologues. There is also some interest in observing different isotopologues in exoplanet (and brown dwarf) atmospheres (Mollière & Snellen 2019; Barrado et al. 2023), which require accurate opacities to be computed for a variety of individual isotopologues for species of interest.

5 COLLISION INDUCED ABSORPTION (CIA) AND CONTINUUM DATA

5.1 Collision induced absorption (CIA)

Collision-induced absorption (CIA) arises as broad features in atmospheric spectra due to additional spectral absorption occurring during collisions between pairs of species, with the interactions inducing a dipole moment. Symmetric molecules, such as O_2 , N_2 , H_2 do not possess any permanent or vibrationally induced electric dipole and are thus microwave and IR inactive, although even if extremely weak, magnetic dipole and electric quadrupole moments can contribute to the absorption. Nevertheless, significant absorption is induced through the creation of a transient dipole via intermolecular interactions during their collisions. This process enables one to reveal the presence of non-polar species in the atmosphere by

detecting collision induced supramolecules signatures. CIA in dense gases was discovered in 1949 by Crawford and Welsh in the infrared range (Crawford, Welsh & Locke 1949). Almost immediately after this discovery, it was realized that CIA of electromagnetic radiation should be important in just about any cool and dense environment, including atmospheres of solar and extrasolar planets (Trafton 1964; Mayor & Queloz 1995), cool white dwarfs (Shipman 1977; Mould & Liebert 1978; Bergeron, Saumon & Wesemael 1995; Saumon & Jacobson 1998), brown dwarfs (Burgasser, Burrows & Kirkpatrick 2006; Geballe et al. 2009), cool main sequence stars (Linsky 1969; Hansen & Sterl Phinney 1998), and the so-called first stars (Rees 1976; Bromm & Larson 2004; Ripamonti & Abel 2004; Bromm et al. 2009; Loeb 2010).

The term ‘collision-induced absorption’ is usually used to refer to any bimolecular absorption that is absent from the isolated molecules but reveals itself as a result of intermolecular interaction (Vigasin & Mokhov 2017). To understand this process theoretically, a detailed statistical analysis of the wide range of thermally exciting interacting molecules that make up molecular pairs is needed. Three categories of molecular pairs, all related to a range of the potential energy surface of the associated van der Waals complex, can be distinguished: true bound, metastable, and free pairs. The simultaneous presence of bound–bound (dimer), bound–free, free–bound, and free–free (collisional) transitions in collision-induced processes makes the spectral analysis and the theoretical treatment very complex.

For decades, CIA has been known to contribute significantly to the transmission of radiation in the Earth's atmosphere, primarily via $\text{N}_2\text{-N}_2$, $\text{N}_2\text{-O}_2$, and $\text{O}_2\text{-O}_2$ (Farmer & Houghton 1966; Rinsland et al. 1981, 1982), as well as to play a crucial role in the radiation budget of other planets (Tipping & Poll 1985). Different molecular pairs have been identified as major contributors to the opacity of planetary atmospheres, such as $\text{H}_2\text{-H}_2$, $\text{H}_2\text{-He}$ in gas giant planets (Richard et al. 2012), $\text{O}_2\text{-CO}_2$ and $\text{CO}_2\text{-CO}_2$ in Venus' atmosphere (Gruszka & Borysow 1997) and $\text{H}_2\text{-N}_2$, $\text{N}_2\text{-CH}_4$ in Titan's (Borysow & Tang 1993). In the Solar System, the H_2 dimer has been detected on Jupiter and Saturn from the comparison between satellite measurements and laboratory absorption spectra recorded by McKellar (1988). Several ionic complexes were also identified for example in the E-ring of Saturn, where the successive solvation of sodium cations by water was proposed to assign the observed mass spectrum (Postberg et al. 2009). $\text{H}_2\text{-H}_2$ and $\text{H}_2\text{-He}$ CIA are considered as a thermometer to measure the thermal structure of the upper tropospheres of the gas giants (Conrath, Gierasch & Ustinov 1998). The opacity of Jupiter in the far infrared is dominated by the CIA of $\text{H}_2\text{-H}_2$ and $\text{H}_2\text{-He}$ (Trafton 1964; Borysow, Moraldi & Frommhold 1984; Richard et al. 2012), making them vital components of not only the solar system gas giant planets but also Jupiter-like exoplanetary atmospheres. The importance of CIA warming in exoplanets was highlighted in Ramirez & Kaltenegger (2017) in the context of rocky planets with H_2 -dominated atmospheres. Furthermore, the impact of CIA on the radiative budget has been demonstrated in the atmospheres of Earth and Super-Earth mass exoplanets with H_2 -enriched atmospheres (Pierrehumbert & Gaidos 2011). Other molecular pairs, including CO_2 have been studied to assess the impact of CIA on the surface temperature and to draw conclusion on the climate and habitability of early Mars (Turbet et al. 2019; Godin et al. 2020; Turbet, Boulet & Karman 2020). These CIA signatures are expected in spectra of hot Jupiters (Bell et al. 2024) too. During their campaign of measurements, Turbet et al. (2019) showed the disagreement between experimental data and the theoretical ab initio calculations of Wordsworth et al. (2017). Sufficient wavenumber coverage and appropriate temperature ranges for the data are necessary for the CIA

effect to be included. When it comes to symmetric molecules, such as H₂ or O₂, the CIA contribution is the only way to quantify the density of these molecules, bearing in mind that their absorption coefficients depend on the square density (see e.g. Richard et al. 2012).

5.2 Continuum

Continuum absorption is a process, and therefore data set, which is typically presented as distinct from CIA. There are two main contributions which make up continuum absorption data: (1) excess opacity due to far line wings (see Section 3), and (2) dimer absorption, i.e. the absorption due to molecules which collide and become loosely bonded; to date this is most commonly associated with water (Ptashnik, Shine & Vigasin 2011a; Shine et al. 2016).

There is potentially some community consensus lacking on how the continuum absorption and CIA processes are distinguished in experiment and calculations, and how they are treated numerically in radiative transfer codes. In some cases (see Section 5.3.2) continuum data contains some CIA absorption also, so care needs to be taken to not double count these contributions. We note the temperature coverage of continuum data is limited.

Probably the most well used source of continuum data, particularly for terrestrial applications and Earth-like planets, is the water vapour continuum. The continuum is a source of opacity which should be included in addition to line-by-line molecular absorption of H₂O (and other species, where necessary and available). It is typically tailored to be used alongside a particular opacity source; e.g. the MT_CKD continuum data (Mlawer et al. 2012, 2023) is designed to work alongside opacities computed from the HITRAN line list with a 25 cm⁻¹ Voigt line wing cut-off. This is due to the continuum data making up for the excess opacity due to far line wings.

5.3 State-of-the-art – data availability

5.3.1 Collision induced absorption (CIA)

The primary source for CIA data is the HITRANonline website,³² where coverage for the number of pairs of species is greatest. Another compilation of CIA data can be found via the Laboratoire de Météorologie Dynamique Generic GCM (LMDG) online repository³³ (see e.g. Charnay et al. 2021), which can be found via the Exo-website.³⁴ For hot Jupiters, with a H₂- and He-dominated atmosphere, H₂-H₂, H₂-He, and He-He are the most important sources of CIA to be included. However for Earth-like or heavier atmospheres, a wider range of species will need to be considered.

Table 11 summarizes the current status of CIA data available in the HITRAN data base. An overview of the transitions and pairs of species included at the time of the 2019 update of the HITRAN CIA parameters can be found in Karman et al. (2019), with updates for the 2020 release of the HITRAN data base outlined in Gordon et al. (2022). Table 11 shows the coverage and limitations of the current state of CIA data for the species where data exists and also the wavenumber regions and temperatures for which this data is applicable. It can be seen that the coverage of CIA data for heavy molecules is seriously lacking, which could have an impact on the

modelling efforts of super-Earth atmospheres. CIA data for H₂-H₂ and H₂-He were originally motivated by the Solar System gas giants (Fletcher, Gustafsson & Orton 2018), but the wide increase in temperature coverage was due to the interest in higher temperature exoplanet atmospheres such as hot Jupiters (Borysow 2002). Light molecular systems are generally less complicated to model and measure, which could also explain the more complete wavelength and temperature coverage of data for lighter species. Higher mass molecular systems with many degrees of freedom, on the other hand, are more challenging to understand. Classical molecular dynamics simulations were used for CH₄-CO₂ (Fakhardji et al. 2022) and compared to measurements (Turbet et al. 2019). The agreement was good but the limitations of the model were highlighted.

The accurate spectroscopic parameters obtained from the comb-referenced spectroscopy measurements of O₂ by Fleurbaey et al. (2021) in Table 9, combined with other CRDS measurements (Mondelain, Kassi & Campargue 2019; Kassi et al. 2021), were recently utilized (Adkins et al. 2023) for fitting a parametrized representation of the theoretical calculations by Karman et al. (2018) for O₂-O₂ and O₂-N₂ collision-induced absorption.

5.3.2 Continuum

There are various data bases and literature which provide continuum data, such as the MT_CKD (Mlawer-Tobin-Clough-Kneizys-Davies) data base³⁵ (Mlawer et al. 2012; Mlawer et al. 2019). Both self (due to the interaction of the species with itself) and foreign (due to interaction with the species with another species in air) continuum data are available. The MT_CKD water vapour continuum was recently made available through HITRANonline (Mlawer et al. 2023). H₂O continuum data is also available from the CAVIAR project (Ptashnik et al. 2011b; Shine et al. 2016). Anisman et al. (2022a) performed a recent analyses of the impact of continuum data in exoplanet atmospheres and showed that its inclusion led to potential observable shifts in the transit depth in the region of 60 ppm for planets with water-rich atmospheres. Original sources of continuum data measured in the laboratory include works such as Baranov et al. (2008) and Odintsova et al. (2020). As well as H₂O, the MT_CKD continuum model also includes contributions from the so-called foreign continuum involving carbon dioxide, ozone, nitrogen, and oxygen (Mlawer et al. 2012). It includes a number of collision-induced continuum absorption bands, so care needs to be taken not to double count when including both continuum and CIA data (Mlawer et al. 2012).

Although we do not go into detail here, we note that other continuum opacities, such as H⁻, can be important for characterizing hot gaseous exoplanet atmospheres. For example, opacity data were computed and implemented into retrieval codes used in the observational study of Lewis et al. (2020) using data from John (1988). Retrieval analysis found evidence for significant amounts of H⁻ in the atmosphere of hot Jupiter HAT-P-41b, thought to be produced through a combination of photochemical and collisional processes (Lewis et al. 2020). Evidence for H⁻ was also found by Mikal-Evans et al. (2022) in the atmosphere of ultrahot gas giant exoplanet WASP-121b and by Arcangeli et al. (2018) for very hot gas giant exoplanet WASP-18b.

³²<https://hitran.org/cia>

³³https://web.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/continuum_data

³⁴https://perso.astrophys.u-bordeaux.fr/~jleconte/exo_k-doc/where_to_find_data.html

³⁵https://github.com/AER-RC/MT_CKD

Table 11. Collision induced absorption (CIA) data sets available from HITRANonline with the wavenumber and temperature ranges for which they provide coverage, and the citations for the original sources.

System	$\nu_{\text{range}}/\text{cm}^{-1}$	$\lambda_{\text{range}}/\mu\text{m}$	T_{min}/K	T_{max}/K	Reference
H ₂ -CH ₄ (equilibrium)	0–1946	> 5.14	40	400	Borysow & Frommhold (1986b)
H ₂ -CH ₄ (normal)	0–1946	> 5.14	40	400	Borysow & Frommhold (1986b)
H ₂ -H ₂	20–10 000	1–500	200	3000	Abel et al. (2011), Fletcher et al. (2018)
H ₂ -H	100–11 000	0.9–100	1000	2500	Gustafsson & Frommhold (2003)
H ₂ -He	20–20 000	0.5–500	200	9900	Abel et al. (2012)
He-H	50–11 000	0.9–200	1500	10 000	Gustafsson & Frommhold (2001)
N ₂ -H ₂	0–1886	> 5.3	40	400	Borysow & Frommhold (1986a)
N ₂ -He	1–1000	10–10 000	300	300	Bar-Ziv & Weiss (1972)
N ₂ -N ₂	0–5000	> 2	70	330	Karman et al. (2015), Baranov, Lafferty & Fraser (2005) Lafferty et al. (1996), Hartmann, Boulet & Toon (2017) Sung et al. (2016a), Chistikov et al. (2019)
N ₂ -air	1850–5000	2–5.4	228	330	Baranov et al. (2005), Lafferty et al. (1996) Hartmann et al. (2017), Menoux et al. (1993)
N ₂ -H ₂ O	1930–2830	3.5–5.2	250	350	Hartmann et al. (2018a)
O ₂ -CO ₂	12 600–13 839	0.7–0.8	296	296	Vangovich, Tran & Hartmann (2009)
O ₂ -N ₂	1300–13 840	0.7–7.7	193	296	Baranov et al. (2005), Lafferty et al. (1996) Thibault et al. (1997), Orlando et al. (1991) Menoux et al. (1993), Maté et al. (1999)
O ₂ -O ₂	1150–29 800	0.3–8.7	193	293	Tran, Boulet & Hartmann (2006), Karman et al. (2018) Baranov et al. (2004), Maté et al. (1999) Thibault et al. (1997), Orlando et al. (1991) Tran et al. (2006), Karman et al. (2018) Tran et al. (2006), Karman et al. (2018) Spiering & van der Zande (2012), Spiering et al. (2011) Thalman & Volkamer (2013), Kassi et al. (2021) Adkins et al. (2023)
O ₂ -air	1300–13 839	0.7–7.7	193	300	Maté et al. (1999), Spiering & van der Zande (2012) Thibault et al. (1997), Orlando et al. (1991) Tran et al. (2006), Karman et al. (2018) Drouin et al. (2017)
CO ₂ -CO ₂	1–3250	3.1–10 000	200	298	Gruszka & Borysow (1997), Baranov & Vigasin (1999) Baranov (2018)
CO ₂ -H ₂	0–2000	> 5	200	350	Wordsworth et al. (2017)
CO ₂ -He	0–1000	> 10	300	300	Bar-Ziv & Weiss (1972)
CO ₂ -CH ₄	1–2000	5–10 000	200	350	Wordsworth et al. (2017)
CO ₂ -Ar	0–300	> 33	200	400	Turbet et al. (2020) Odintsova et al. (2021)
CH ₄ -He	1–1000	> 10	40	350	Taylor, Borysow & Frommhold (1988)
CH ₄ -Ar	1–697	14.3–10 000	70	296	Samuelson, Nath & Borysow (1997)
CH ₄ -N ₂	0–1379	> 7.3	40	400	Finenko et al. (2021, 2022)
CH ₄ -CH ₄	0–990	> 10.1	200	800	Borysow & Frommhold (1987)

5.4 Data used by retrieval codes

5.4.1 Collision induced absorption (CIA)

CIA data are readily usable in retrieval codes such as ARCiS, TauREx3, petitRADTRANS, and others mentioned in Table 2. The HITRAN formatted data (.cia) provides a basis for including CIA data³⁶ (Karman et al. 2019). As noted above, CIA including H₂ and He is commonly included in the atmospheric modelling of hydrogen and helium rich atmospheres and the corresponding data are distributed with the default data sets for retrieval codes such as TauREx3 and ARCiS. Additional species can be included in the modelling and retrieval codes as they become available or are updated, following the HITRAN format to maximize interoperability. Though data format does not pose a major limitation, restricted

wavelength range coverage for the CIA data poses constraints on modelling where CIA between additional species is considered.

The HITRAN CIA format supports different sets of absorption data for the same pair of species but for varying temperatures. While this is provided in some data sets, it relies on implementation in the retrieval code or downstream processing library in order to query based on temperature. This is not always supported.

5.4.2 Continuum

Anisman et al. (2022a) modelled the effects of including versus not including continuum data for H₂O on examples of low-mass temperate exoplanet transmission spectra using TauREx3 (Al-Refaei et al. 2021). The effect of continuum cross-sections exhibit an inverse relationship with temperature, so are most important for use in modelling atmospheres with temperatures at or close to Earth's.

As previously mentioned, one aspect of using continuum models such as MT_CKD is that they rely on specific line wings being

³⁶https://hitran.org/data/CIA/CIA_Readme.pdf

used for computations of corresponding molecular cross-sections. For example, the MT_CKD model assumes that a line wing cutoff of 25 cm^{-1} is used, otherwise there can be double counting of the wing contribution (see for example, Gharib-Nezhad et al. 2024).

5.5 What's being worked on?

CIA coefficients of H_2 and $\text{H}_2\text{-He}$ have been recently measured in the $3600\text{--}5500\text{ cm}^{-1}$ ($\sim 1.8\text{--}2.8\text{ }\mu\text{m}$) spectral range in order to characterize Jupiter's atmosphere (Vitali et al., in preparation). These are shown in Fig. 4, covering pressure values from 10 mbar to 70 bar and temperature values of $120\text{--}500\text{ K}$. It is important to have up-to-date CIA measurements, even for $\text{H}_2\text{-H}_2$ and $\text{H}_2\text{-He}$ where there is already data available (see Table 11), either to expand the wavelength region or to compare the newer measurements to previous measurements or theoretical models present in the literature. As was highlighted in Section 5.1, the CIA of $\text{H}_2\text{-H}_2$ and $\text{H}_2\text{-He}$ contribute significantly to the opacity of Jupiter, and therefore Jupiter-like exoplanets (Trafton 1964; Borysow et al. 1984; Richard et al. 2012).

CIA laboratory measurements have also been published recently from groups in Grenoble (Fleurbaey et al. 2022). There is a simulation chamber for absorption spectroscopy in planetary atmospheres in INAF (Snels et al. 2021); see Fig. 5. In terms of species, molecular systems related to Venus and early Mars are mostly being targeted, i.e. $\text{CO}_2\text{-H}_2\text{O}$ and $\text{CO}_2\text{-CO}_2$.

Theoretical work is planned for molecular systems related to Jupiter-like planets.

5.6 Data needs: what's missing and urgent?

5.6.1 Collision induced absorption (CIA)

(i) **Data for additional CIA species:** CIA data are currently unavailable for many pairs of species that are thought to be important in exoplanetary atmospheres, for example N_2 is currently the only available species for collisions with H_2O (see Table 11). H_2O , and other species such as CO_2 and CH_4 have been detected multiple times in exoplanet atmosphere spectra with *JWST*. CIA data for these molecules or combinations including them is crucial for a correct interpretation of the spectra especially in the search for biosignatures (Malaterre et al. 2023).

(ii) **Wavelength coverage:** much of the data that is available is limited to bands at wavelength ranges outside the window observed by *Ariel* (see Table 11 for an overview of current coverage of CIA data). The broad CIA features will, however, impact the shape of the *Ariel* observed spectra. In Jupiter's spectra, some CIA contributions are visible between 2 and 2.5 microns (López-Puertas et al. 2018) which is lower in wavelength than the data available for many other pairs. Without taking CIA into account, it is possible that major uncertainties on the retrieved values will remain.

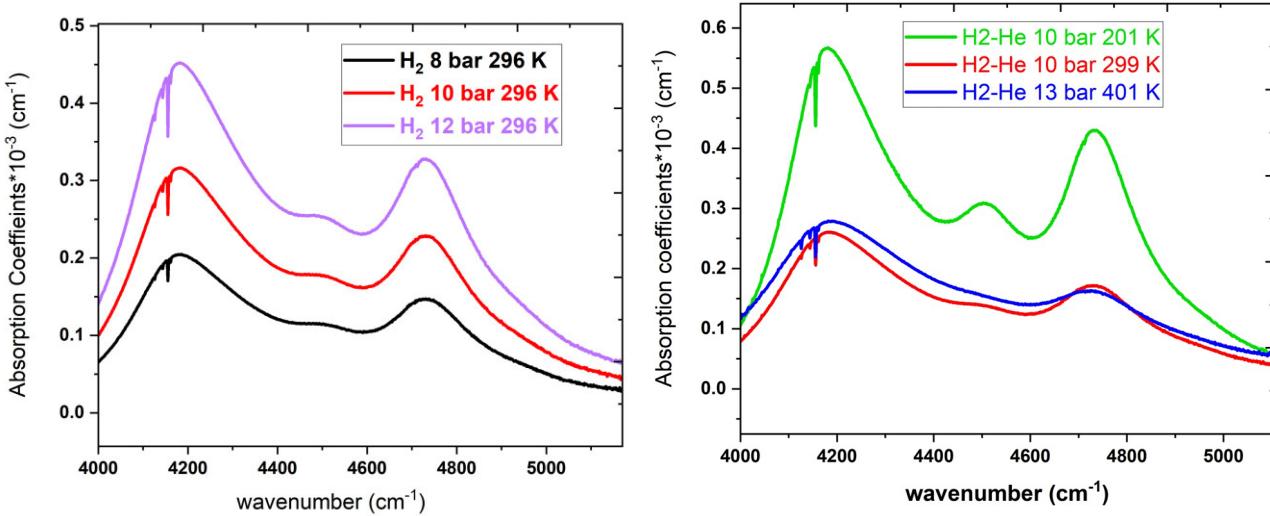
(iii) **Temperature dependence:** data are often available only at room temperature, and the extension to higher temperatures is desirable, especially for modelling hot Jupiters and lava planets. We note some work has been done towards this, e.g. Stefani et al. (2018) for CO_2 , along with data for $\text{H}_2\text{-H}_2$, $\text{H}_2\text{-H}$, $\text{H}_2\text{-He}$, He-H , detailed in Table 11.

(iv) **Isotopologues:** CIA data coverage does not currently extend far in the consideration of isotopologues; generally the main isotopologue is taken for theoretically derived data, while the terrestrial ratios are used for experimentally derived data. The potential impact of a variation in isotopologues for CIA is small, meaning isotopologue

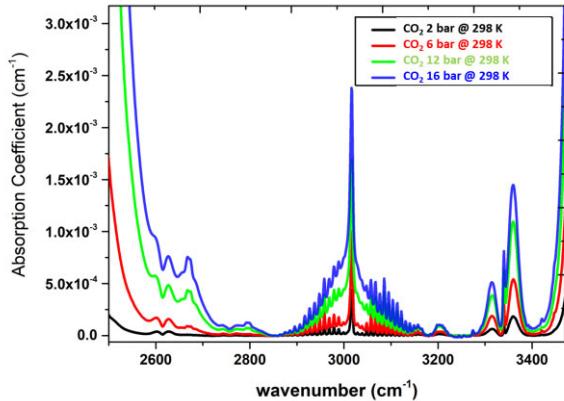
data are less urgent than for the above mentioned pairs, though it is potentially relevant for the HD-H_2 pair (Karman et al. 2019).

5.6.2 Continuum

(i) **Species other than H_2O :** although the MT_CKD data base contains some other species such as CO_2 , O_3 , N_2 , and O_2 , the main focus of continuum absorption has been on H_2O . (Exo)planets with atmospheres dominated by species other than H_2O have a particular need for continuum data.


(ii) **Temperature dependence:** continuum absorption data for H_2O is currently only available below temperatures of 500 K , so there is no available data to use for modelling exoplanets with higher temperature atmospheres. We do note, however, that the impact of the H_2O continuum absorption on spectra decreases as the temperature increases (Anisman et al. 2022a), so this is not thought to be of urgent concern for the community.

6 AEROSOLS AND SURFACES


It is well known that the types of cloud or haze particles, collectively known as aerosols, in the atmospheres of exoplanets will have an effect on their observed transmission or emission spectra (Wakeford & Sing 2015; Pinhas & Madhusudhan 2017; Min et al. 2020; Ma et al. 2023; Taylor & Parmentier 2023), and their albedo (García Muñoz & Isaak 2015; Fraine et al. 2021; Barrientos et al. 2023; Chubb et al. 2023), through the cloud particle's absorption and scattering properties. Generally, haze particles are smaller than cloud particles and are formed via photochemistry, which is a disequilibrium process with stellar UV leading to the formation of solid particles. Clouds, on the other hand, are formed via equilibrium processes which involve condensation and rainout.

Gao et al. (2021) give an overview of the state of knowledge (as of 2021 February) of exoplanet aerosols as determined from observations, modelling, and laboratory experiments. Wavelength-dependent, and ideally also temperature-dependent, refractive indices, also known as optical constants, are required to compute the scattering and absorption coefficients of clouds and hazes (aerosols) for use in exoplanetary atmosphere models. Thermochemical data are also required for predicting which aerosol species are expected to be present at various altitudes and horizontally across a given exoplanet atmosphere. Typically the outputs from global circulation models (GCMs), such as pressure-temperature profiles as a function of longitude and latitude across the planet (see e.g. Cho, Skinner & Thrastarson 2021; Lee et al. 2021; Schneider et al. 2022; Skinner & Cho 2022; Skinner, Nättilä & Cho 2023; Changeat et al. 2024, for details on GCMs and complex atmospheric dynamics) are used as a basis for kinetic cloud models which then predict which particles will condense at different locations of the atmosphere (see e.g. Ackerman & Marley 2001; Helling et al. 2008; Gao et al. 2020a; Roman et al. 2021; Rooney et al. 2022; Helling et al. 2023). Usually some assumptions need to be made, such as initial elemental abundances available for condensing, and the strength of vertical atmospheric mixing, for example. Due to the importance of optical and UV data for understanding aerosol properties in exoplanet atmospheres, it has been suggested by Fairman et al. (2024) and Wakeford et al. (2020) that one should complement *JWST* observations with one from *HST*.

Similarly, planetary surfaces can be modelled by a simple reflectance model (for instance using linear mixing) (Cui et al. 2018), but also by radiative transfer modelling using optical constants, similar to the approach for Solar System planets (Hapke 1993; Andrieu

Figure 4. Left: H_2 CIA coefficients at different pressures (8, 10, 12 bars) and room temperature (296 K). Right: $\text{H}_2\text{-He}$ CIA coefficients at different pressures (10, 13 bars) and temperatures (201, 299, 401 K). (Vitali et al., in preparation).

Figure 5. The absorption spectra of 16.03 amagat of carbon dioxide at 243 and 323 K, demonstrating a number of CIA bands, recorded with PASSxS, after subtraction of the strong contributions of the v_3 fundamental band at 2350 cm^{-1} and a weaker Fermi doublet ($v_3 + v_1$, $v_3 + 2v_2$) around 3700 cm^{-1} , as well as contributions of the $^{16}\text{O}^{12}\text{C}^{18}\text{O}$ isotopomer (Snels et al. 2021).

et al. 2015). In both contexts, already existing data bases contain relevant and useful sources but in many cases new measurements would be desirable (see Section 6.4). Here we outline some typical sources of currently available data for these different applications.

6.1 State-of-the-art – data availability

6.1.1 Refractive indices

Codes which compute the scattering and absorption properties of a particle or a surface require the refractive index to be known. The real and imaginary part of the refractive index relates to the scattering and absorption properties of the material, respectively. The refractive indices of aerosols are complex numbers which are intrinsically dependent on the individual compositions of the aerosols (see for example, Di Biagio et al. 2019). If modelling an atmospheric layer consisting of different types of aerosol materials, or modelling mixed-material aerosol particles, then the refractive indices are often

mixed using effective medium theory (see for example, Mishchenko, Dragach & Liu 2016).

As well as there being variation with wavelength, there is also some temperature dependence with refractive indices. This has been demonstrated by Zeidler, Mutschke & Posch (2015) for olivine and enstatite up to 973 K and by Zeidler, Posch & Mutschke (2013) for corundum, spinel, and α -quartz up to 900 K. It can be seen by such studies that the vibrational band peaks shift slightly and their shapes change with temperature, which could be enough to lead to some incorrect conclusions when trying to fit models to observed spectra. The reason for these changes is that at higher temperatures, vibrational transitions will tend to occur between higher states with slightly lower energetic differences, and the states will be broadened by vibrational mode interactions (Zeidler et al. 2015). This causes broader and redshifted bands with increasing temperature; see for example, figs 2–7 of Zeidler et al. (2015). We note that data for high temperatures are typically not currently available for many species, and so room temperature data are often used for characterizing higher temperature planetary atmospheres, potentially causing biases in analyses.

Table 12 gives the wavelength and temperature range of the available refractive indices of various materials from different sources. We note this table is not exhaustive, and it is useful to search in the various data bases and compilations mentioned below for additional species of interest. Studies which predict which cloud or haze species are present in various exoplanet atmospheres (see for example, Ackerman & Marley 2001; Helling et al. 2008; Gao et al. 2020a; Rooney et al. 2022; Helling et al. 2023) are useful as references for species to include in atmospheric models.

Data bases which compile the optical properties of various materials include:

Heidelberg-Jena-St.Petersburg-Data base of Optical Constants (HJPDOC)⁴¹ (Henning et al. 1999; Jäger et al. 2003) and **Data base of Optical Constants for Cosmic Dust**⁴² provide optical properties (refractive index, reflectivity, transmittance) of analogue materials of cosmic dust in the wavelength range from the UV to

⁴¹<https://www2.mpia-hd.mpg.de/HJPDOC/>

⁴²<https://www.astro.uni-jena.de/Laboratory/OCDB/>

Table 12. Sources used for the real (n) and imaginary (k) parts of the refractive indices of a selection of species of various materials typically used in (exo)planetary atmosphere models of clouds and hazes (aerosols). The temperature range is left blank in cases where we assume the data are not higher than room temperature.

Material	Form	Name	Wavelength range (μm)	Temperature range (K)	Reference
Al_2O_3	Crystalline	Corundum	0.03–10	–	Palik (2012)
Al_2O_3	Crystalline	Corundum	6.7–10 000	300–928	Zeidler et al. (2013) ^a
Al_2O_3	Amorphous	Corundum	0.2–12	–	Koike et al. (1995) ^a
Al_2O_3	Amorphous	Corundum	7.8–500	–	Begemann et al. (1997) ^a
$\text{C}_x\text{H}_y\text{N}_z$	Solid	Tholins	0.02–920	–	Khare et al. (1984) ^b
KCl	Crystalline	Potassium chloride	0.22–167	–	Querry & Wieliczka (1988)
Fe	Metallic	Iron	0.1–100 000	–	Palik (2012)
Fe_2O_3	Solid	Hematite	0.1–1000	–	Triaud (2005) ^d
Fe_2SiO_4	Crystalline	Fayalite	0.4–10 000	–	Unpublished ^a
FeO	Amorphous	Wustite	10–510	10–300	Henning et al. (1995)
FeS	Crystalline	Troilite	20–480	10–300	Pollack et al. (1994)
MgAl_2O_4	Crystalline	Spinel	6.7–10 000	300–928	Zeidler et al. (2013) ^a
Mg_2SiO_4	Amorphous	Forsterite	0.2–950	–	Jäger et al. (2003)
Mg_2SiO_4	Crystalline	Forsterite	2–100	50–295	Suto et al. (2006)
MgO	Cubic	Magnesium oxide	0.2–625	–	Palik (2012)
MgSiO_3	Amorphous (glass)	Enstatite	0.2–500	–	Dorschner et al. (1995) ^e
MgSiO_3	Amorphous (sol-gel)	Enstatite	0.2–1000	–	Jäger et al. (2003) ^e
MgSiO_3	Crystalline	Enstatite	2–98	–	Jaeger et al. (1998)
SiO_2	Crystalline	Quartz	0.05–8.4	–	Palik (2012)
SiO_2	Crystalline	Quartz	6.25–10 000	300–928	Zeidler et al. (2013)
SiO	Amorphous	Silicon oxide	0.05–100	–	Palik (2012)
TiO_2	Crystalline	Rutile	0.4–10	–	Zeidler et al. (2011)
TiO_2	Crystalline	Anatase	0.4–10	–	Zeidler et al. (2011)

^a: Available via the data base of optical constants for cosmic dust³⁷

^b: Available via the HITRAN2020 data base³⁸ (Gordon et al. 2022)

^c: Available via the refractiveindex.info data base of optical constants³⁹ (Polyanskiy 2024)

^d: Available via the aerosol refractive index archive (ARIA)⁴⁰

^e: Jäger et al. (2003) use the sol-gel method, and Dorschner et al. (1995) a melting and quenching technique; a comparison between the two is made in Jäger et al. (2003).

³⁷<https://www.astro.uni-jena.de/Laboratory/OCDB/crsilicates.html>

³⁸<https://hitran.org/aerosols/>

³⁹<https://refractiveindex.info/>

⁴⁰<http://eodg.atm.ox.ac.uk/ARIA/>

far IR mainly produced in Astrophysical Institute and University Observatory (AIU) Jena but also from open sources, including papers, reports, dissertations, where these data were derived. Users of the data base are requested to cite the original sources of data.

Aerosol refractive index archive (ARIA)⁴³ is a comprehensive collection of refractive index data sets of typical aerosol particles covering broad spectroscopic ranges. It contains both the original experimental and interpolated (mostly from very low to room temperature) values, intended to be used in light scattering parameters by the Oxford Mie Code.⁴⁴

HITRAN2020 data base⁴⁵ (Gordon et al. 2022) provides refractive indices from visible to millimetre spectral ranges for many types of species including aerosol particles, required for calculation of extinction, scattering, and absorptive properties of atmospheric particles aiming at terrestrial and planetary (low temperature) applications.

Optical constants data base (OCdb)⁴⁶ (see e.g. Drant et al. 2024) provides optical constants of organic refractory materials (i.e. tholins, laboratory analogues of photochemical hazes) and ices relevant

to planetary and astrophysical environments from peer-reviewed sources. The data provided mostly correspond low temperatures.

Open-source data base of optical constantsrefractiveindex.info⁴⁷ (Polyanskiy 2024) is another recent resource of optical data from publicly available sources such as scientific publications and material data sheets published by manufacturers.

Texas A&M University dust 2020 data base (TAMUDust2020) (Saito et al. 2021) compiles the optical properties of irregularly shaped aerosol particles, such as dust aerosol and volcanic ash particles, for a wide range of values of the size parameter, the index of refraction, and the degree of sphericity. The data are produced using state-of-the-art light scattering calculations and validated with laboratory/*in-situ* measurements.

Original sources of refractive index data include those of works such as Henning et al. (1995), Jäger et al. (2003), Dorschner et al. (1995), Zeidler et al. (2011), and Drant et al. (2024). A number of species are also included in Palik's handbook of optical constants (Palik 2012).

Refractive indices as a function of wavelength for different species thought to be present in exoplanetary atmospheres have been compiled in various works, such as Lavvas & Koskinen (2017),

⁴³<http://eodg.atm.ox.ac.uk/ARIA/>

⁴⁴<https://eodg.atm.ox.ac.uk/MIE/>

⁴⁵<https://hitran.org/aerosols/>

⁴⁶<https://ocdb.smce.nasa.gov>

⁴⁷<https://refractiveindex.info/>

Kitzmann & Heng (2017), Min et al. (2020), and Lietzow & Wolf (2022). Kitzmann & Heng (2017) provide a rather extensive compilation of wavelength-dependent refractive indices (real and imaginary components; see their table 1 for species and sources) which are stored at the associated GitHub page for the LX-MIE mie-scattering tool.⁴⁸ Similarly, the wavelength-dependent refractive indices used in Wakeford & Sing (2015) can be downloaded from the author's webpage,⁴⁹ although some updates have become available since this early compilation.

Anisotropic crystalline particles have refractive indices which depend on the direction of propagation of incident light with respect to the particle's axes of symmetry. The complex refractive indices related to light perpendicular to the main symmetry axis are often named ordinary, while the others are labelled extraordinary. These complex indices should typically be averaged over the three (x , y , z) axes of the particle for use in atmospheric codes. It is not always clear if available indices have already been mixed, but they may be labelled either ordinary/extraordinary, or by their x , y , z axes. Where indices have been averaged is often noted in compilations such as Kitzmann & Heng (2017) (see their table 1).

Although the refractive indices data in these data bases exist for very broad spectroscopic ranges, from microwave to far UV, for a given species the coverage is usually rather limited, see for example Table 12. A broad spectral range coverage of the optical properties is crucial to understand the role of aerosols in (exoplanet) atmospheric retrievals via radiative transfer models. In the context of the Ariel spectroscopic range, the IR data are especially urgent, but broader ranges are also required for atmospheric chemistry models involved in the retrievals. Due to the lack of the laboratory or *in-situ* measurements, it is common and especially important for exoplanet atmosphere applications to use interpolations to obtain continuous data (see for example, Kitzmann & Heng 2017).

The Granada-Amsterdam light scattering data base⁵⁰ (Muñoz et al. 2012) contains experimental scattering matrices as functions of the scattering angle of samples of small irregular particles. These are laboratory experiments typically performed at two optical wavelengths. Laboratory data such as these are important to be able to benchmark theoretical codes, particularly those which model the scattering matrices of irregularly shaped particles. Available codes for computing complex dust particle opacities, both for spherical and fractal shapes, include optool (Dominik, Min & Tazaki 2021),⁵¹ the discrete-dipole-approximation code ADDA (Yurkin & Hoekstra 2011),⁵² the T-matrix codes (Mackowski & Mishchenko 1996)⁵³ and CORAL (Lodge, Wakeford & Leinhardt 2023).⁵⁴ Other well-used codes include PyMieScatt⁵⁵ (Sumlin, Heinson & Chakrabarty 2018), which can deal with both direct and inverse Mie calculations.

6.1.2 Thermochemical data

Thermochemical data are required as input to kinetic cloud models of exoplanet atmospheres, for example in the computation of bulk growth processes for a particular species as a function of pressure

⁴⁸<https://github.com/exoclime/LX-MIE>

⁴⁹<https://stellarplanet.org/science/condensates/>

⁵⁰<https://www.iaa.csic.es/scattering/list/index.html>

⁵¹<https://github.com/cdominik/optool.git>

⁵²<https://github.com/adda-team/adda.git>

⁵³<https://www.giss.nasa.gov/staff/mmisichenko/tmatrix/>

⁵⁴<https://github.com/mglodge/CORAL.git>

⁵⁵<https://pymiescatt.readthedocs.io/en/latest/>

and temperature, which requires gas-surface reactions (Helling 2021). There are several thermochemical properties of interest for astrophysical studies, including the Gibbs free energies of formation, the change in enthalpy, or the entropy (Lecoq-Molinos et al. 2024). Chemical and cluster data for all the species that take part in the cloud formation process are required for complete atmospheric models. Particularly, cluster data are crucial to model the nucleation process and the formation of cloud condensation nuclei (CCN). Data bases, including the NIST-JANAF Thermochemical tables (Chase 1998)⁵⁶ and the other data bases listed in Section 7.1.1 contain thermochemical data but rarely cluster data. As noted by Helling (2021), laboratory data are often not available, and so thermochemical data for various species can also be computed. For example, thermochemical data for TiO_2 nanoclusters have been recently computed by Sindel et al. (2022), and for V_xO_y clusters by Lecoq-Molinos et al. (2024). These data are appropriate for use in modelling the formation of cloud condensation nuclei in exoplanet atmospheres. A variety of other sources for thermochemical data exist. For example, for TiO_2 data are provided by Jeong et al. (2000), Lee et al. (2015), and Sindel et al. (2022), with Jeong et al. (2000) also providing information about other intermediate Ti_xO_y structures, including their vibrational frequencies. For SiO and SiO_2 thermochemical data are available from works such as Bromley, Gómez Martín & Plane (2016) and Flint & Fortenberry (2023). For MgO , Köhler, Gail & Sedlmayr (1997) provide thermochemical data, and Chen et al. (2014) provide cluster structures and vibrational spectra for $(\text{MgO})_x$ (but not thermochemical data directly). Other species with thermochemical data include silicon carbide (Gobrecht et al. 2017), KCl (Rose & Berry 1992), silicates (Goumans & Bromley 2012), magnesium and calcium aluminates (Gobrecht et al. 2023), aluminium oxides (Gobrecht et al. 2022, 2018; Lam et al. 2015; Patzer et al. 2005), and Fe-bearing species (Chang et al. 2013; Ding et al. 2009).

Condensation curves (or vapour pressure curves), which indicate the thermal stability of a species, are necessary inputs into codes which predict the expected cloud materials present in an exoplanet's atmosphere based on its pressure and temperature structure, typically found via global climate models (GCMs). Condensation curves appropriate for modelling exoplanet atmospheres up to high temperatures are available from a number of sources, with those for some typical species thought to be important in exoplanet atmospheres given in Table 13. Gao et al. (2020a)⁵⁷ give expressions for condensation curves from a number of different sources, including some of those mentioned in Table 13.

For cooler atmospheres, such as those in our solar system, ices are formed when gaseous species become supersaturated. The altitudes where the saturation occurs is a function of the mixing ratio of the species in question and the atmospheric temperature. Species dependent condensation curves will therefore vary with season and latitude, for example in the case of benzene in Titan, the latitudinal dependence is particularly evident in the fall at the poles where the decrease in stratospheric temperature is more dramatic and leads to an increase in the mole fractions. Barth (2017) extrapolated high-temperature vapour pressure data of benzene (C_6H_6) to lower temperatures to calculate benzene condensation curves. Their results predicted benzene and HCN to condense at near identical altitudes for the temperature profiles. However, Dubois et al. (2021) measured the equilibrium vapour pressure of pure crystalline benzene (C_6H_6)

⁵⁶<https://janaf.nist.gov/>

⁵⁷<https://github.com/natashabatalha/virga/blob/master/virga/pvaps.py>

Table 13. Example of sources used for vapour pressure/condensation curves of various materials typically thought to be important in exoplanet atmospheres, particularly those at higher temperatures such as hot Jupiters.

Material	Reference	Note
Al ₂ O ₃	Wakeford et al. (2016)	Following the approach of Visscher, Lodders & Fegley (2010)
CaTiO ₃	Wakeford et al. (2016)	–
KCl	Morley et al. (2012)	–
Fe	Visscher et al. (2010)	–
Fe ₂ O ₃	Sharp & Huebner (1990)	Coefficients for a large number of condensed species are given in Table 2(b)
Fe ₂ SiO ₄	Sharp & Huebner (1990)	–
FeO	Sharp & Huebner (1990)	–
FeS	Woitke et al. (2018)	Equation inside GGchem source code
MgAl ₂ O ₄	Woitke et al. (2018)	Equation inside GGchem source code
Mg ₂ SiO ₄	Visscher et al. (2010)	–
MgSiO ₃	Visscher et al. (2010)	–
SiO ₂	Grant et al. (2023)	–
SiO	Gail et al. (2013)	Older data from Nuth-III & Ferguson (2006), Schick (1960)
TiO ₂	Woitke & Helling (2004)	Powell et al. (2018) give this formula rewritten in different units

at temperatures relevant to Titan. Their measurements indicated that the prior extrapolations from literature values underestimated the vapour pressure. Feeding their laboratory data into a microphysical model, Dubois et al. (2021) showed that C₆H₆ polar cloud particles form first at higher altitudes and continue to exist at all latitudes down to the saturation point of HCN at slightly lower altitudes where co-condensation of C₆H₆ and HCN is possible. This is because the larger measured vapour pressure of C₆H₆ allows for larger ice particles that continue to grow deeper down in the troposphere, beyond the condensation point of HCN. It is therefore important for accurate condensation curve data to be available across a wide range of temperatures for a large number of species relevant to (exo)planetary and solar system atmospheres.

Notable sources for condensation curve formulae which can be used in atmospheric models include Visscher, Lodders & Bruce Fegley (2006), who give approximations for condensation curves of various sulphur- and phosphorus-bearing species, and Visscher et al. (2010) for iron- silicon- and magnesium-bearing species. Morley et al. (2012) compute condensation curves for Cr, MnS, Na₂S, ZnS, and KCl, for use in characterizing brown dwarf atmospheres, based on the thermochemical models of Visscher et al. (2006, 2010). Wakeford et al. (2016) give expressions for equilibrium condensation temperatures as functions of pressure and metallicity for various Al- and Ti-bearing species. Appendix A of Ackerman & Marley (2001) provides relations for saturation vapour pressures of a few species, such as NH₃, H₂O, Fe, and MgSiO₃ (enstatite). For NH₃ they fit measurements tabulated in the CRC Handbook of Chemistry and Physics (Weast 1971). For H₂O they make use of data from Buck (1981), and from Barshay & Lewis (1976) for Fe and enstatite. Section 3.2 of Woitke et al. (2018), along with their supplementary document (Woitke, Helling & Turner 2017), give a detailed comparison of condensed phase data from either the NIST-JANAF data base (Chase 1998) or the geophysical SUPCRTBL data base⁵⁸ (Johnson, Oelkers & Helgeson 1992; Zimmer et al. 2016). They offer comparisons of 121 species, and find good agreement for all species apart from anorthite, CaAl₂Si₂O₈. These data are used in Woitke et al. (2018) to compute vapour pressure curves, with an example for Fe shown in their fig. D.1.

Fig. 4 of Gail et al. (2013) illustrates the importance of using the most up-to-date measurements for vapour pressure curves, as

they compare their experimentally determined data for SiO with data from Nuth-III & Ferguson (2006) and Schick (1960). There is a considerable difference between the curves shown for SiO, with the newer measured data allowing SiO to be present in solid form up to higher temperatures than the older data. It is recommended that any users of thermochemical data such as condensation curves cite the sources of their data to allow for comparisons and for re-analysis in the case of newer data being produced. A thorough investigation into the reliability of the data used for condensation curves of species important for characterizing (exo)planetary atmospheres such as those mentioned here, including additional newer measurements, would be a worthwhile endeavour, useful for assessing which species are expected in the atmospheres of current and future observations.

6.1.3 Measured cloud and haze production in the laboratory

Atmospheric chamber experiments can be used to simulate the atmospheres of Solar System bodies, in order to study haze formation, and measure transmittance and reflectance spectra. This has been done for Titan (Imanaka et al. 2004; He et al. 2022a), Triton (Moran et al. 2022), and early Earth (DeWitt et al. 2009; Hörst et al. 2018b); in such studies many haze properties can be measured, such as production rate, bulk composition, molecular composition, and their transmission and reflectance from the optical to the near-infrared. The latter is done with Fourier transform infrared (FTIR) spectroscopy. In the case of He et al. (2022a), they provide a set of optical constants of Titan haze analogues in the wavelength range 0.4–3.5 μ m. Similar atmospheric chamber experiments have been used to study the formation of water ice clouds on Mars (Phebus et al. 2011), organic aerosols in anoxic and oxic atmospheres of Earth-like exoplanets (Gavilan et al. 2018), precursors to haze formation in cool exoplanet atmospheres (He et al. 2019), and to explore haze production in super-Earth and mini-Neptune atmospheres (Hörst et al. 2018a).

Several groups contribute to data bases of refractive indices using different laboratory setups, such as COSMIC at NASA Ames (Sciamma-O'Brien et al. 2023), PAMPRE at LATMOS (Gavilan et al. 2018; Drant et al. 2024), and John Hopkins University (He et al. 2022a). Previous work on Titan haze analogues revealed that the setup conditions likely affect the analogue's composition and thus their refractive indices (see e.g. Brassé et al. 2015). Further laboratory experiments are important to fully understand the composition of different solid particles and their resulting optical properties.

⁵⁸<https://models.earth.indiana.edu/supcrtbl.php>

6.1.4 Surface reflectance

For terrestrial exoplanets and exomoons, the bottom boundary layer of the atmosphere must be considered as the surface. Table 14 summarizes the most important data bases of surface reflectance in Planetary Science. They encompass Earth natural rocks analogues, but also synthetic materials in the lab (such as ices), meteorites and *in-situ* samples measured back in Earth, such as the Moon or Ryugu asteroid. The reflectance spectrum of Phobos was measured from 0.4 to 4.75 μm by Wargnier et al. (2023). The data set from *in-situ* measurements of reflectance in planetary science is usually scattered and unfortunately, such a data base is missing.

Reflectance measurements can be done over several wavelength ranges, but also for different observation geometries (incidence and emergence angles), leading to BiDirectional Reflectance Distribution Function (BRDF). Laboratory measurements can also be done for various surface properties (such as grain size, grain shape, compaction, and roughness) but also various kinds of mixtures (such as linear geographic mixture, intimate mixture, and intragrain mixture).

The data bases which contain information on observation geometries and the nature of the samples do not always contain optical constants, as can be seen by Table 14. Additionally some data bases contain characterization of the samples using other methods of investigations (Raman spectroscopy, petrological description, X-ray diffraction, Laser Induced Breakdown Spectroscopy, X-ray fluorescence, or electron microprobe analysis). The SSHADE (Solid Spectroscopy Hosting Architecture of Data bases and Expertise) (Schmitt et al. 2018) data base regroups several data bases. It provides spectral and photometric data obtained by various spectroscopic techniques including reflectance spectroscopy. The measured samples include ices, pure minerals, rocks, organic, and carbonaceous materials as well as liquids. They are either synthetic, natural samples from Earth or other planetary bodies such as (micro-)meteorites or lunar soils. Additional characterizations of the samples are not systematically done but optical constants are often available and observation geometries are generally given. The USGS-Speclab (Kokaly et al. 2017) data base regroups spectra measured with laboratory, field, and airborne spectrometers, acquired on samples of specific minerals, plants, chemical compounds, and man-made materials. It also contains mathematically computed mixtures. The RELAB data base regroups spectroscopic data acquired on pure minerals, natural, and synthetic samples. The ECOSTRESS data base (Meerdink et al. 2019) regroups data acquired on natural and man-made materials. The Mineral and Rock Sample Data base University of Winnipeg (Cloutis 2015) contains data acquired on pure minerals and natural or synthetic mixtures. Finally, the PTAL (Planetary Terrestrial Analogue Library; Dypvik et al. 2021) regroups data acquired on whole rocks. Additional characterization are systematically done by multiple techniques.

6.2 Data used by retrieval codes

There are a number of exoplanetary atmospheric modelling and retrieval codes which include the effects of solid-state aerosol species in their radiative transfer calculations, and thus require wavelength-dependent, and ideally also temperature-dependent, refractive index data (e.g. Wakeford & Sing 2015; Pinhas & Madhusudhan 2017; Min et al. 2020; Ma et al. 2023; Taylor & Parmentier 2023). The LRS instrument onboard *JWST*, covering ~ 5 –12.5 μm , allows for observations of vibrational-mode aerosol signatures which are commonly found in this wavelength region; for example quartz

clouds were inferred in hot Jupiter WASP-17 b by Grant et al. (2023) using optical constants of crystalline SiO_2 at 928 K from Zeidler et al. 2013 and silicate clouds (MgSiO_3 , SiO_2 , and SiO) have been inferred in hot Neptune WASP-107 b by Dyrek et al. (2024).

Many retrieval codes have their own built-in library of refractive indices, the option to directly include pre-computed cloud opacities, or both. See for example table 1 of Min et al. (2020) for species included in atmospheric modelling and retrieval code ARCiS, with the option to read in your own refractive index data and use the code to compute either spherical or irregularly shaped particles (Min, Hovenier & de Koter 2005) of a defined particle size distribution. petitRADTRANS (Mollière et al. 2019) also has a list of built-in cloud opacities,⁵⁹ with the option to add more. There are also available add-ons which can be coupled with existing retrieval codes. For example, *YunMa* is an exoplanet cloud simulation and retrieval package (Ma et al. 2023) which can be coupled to the TauREx3 platform to retrieve microphysical cloud properties in exoplanet atmospheres.

Typically in cases of data bases and compilations, the original citation for the measured or computed refractive indices is mentioned. It is important these citations are also included in any atmospheric modelling or retrieval works, as there may be future updates for particular species. Works such as Zeidler et al. (2015) highlight the importance of this; they show temperature-dependence has an impact on the refractive indices and therefore the spectral features which are included in atmospheric models for enstatite and olivine.

The refractive indices determined by using different techniques can differ from one another; for example in the case of amorphous MgSiO_3 (see Table 12) Jäger et al. (2003) use the sol-gel method, and Dorschner et al. (1995) use melting and quenching technique; a comparison between the two is made in fig. 4 of Jäger et al. (2003).

Surfaces are often neglected but some retrievals propose to include surface reflectance measurements by linear mixing (Cui et al. 2018). More advanced radiative transfer modelling will be used, based on optical constants, for instance using the Hapke model (Hapke 1993). Surface reflection is also an important component of studies such as Stam (2008), Fauchez, Rossi & Stam (2017), and Trees & Stam (2022), who consider the reflection spectra of a planet's atmosphere and surface (if there is one), including polarization state; these studies are particularly useful for modelling the observations of future instruments such as the Habitable Worlds Observatory (HWO) (Vaughan et al. 2023).

6.3 What's being worked on?

Ongoing laboratory experiments (see for example, setups described in works such as Deguine et al. 2020; Drant et al. 2024; He et al. 2024) are essential for measuring new refractive indices, exploring photochemical pathways, and verifying theoretical calculations related to aerosols in planetary and exoplanet atmospheres. He et al. (2024), for example, recently measured the density and optical properties of organic haze analogues generated in water-rich exoplanet atmosphere experiments, for use in characterizing observations from *JWST*. Gao et al. (2021), who give an overview of the state of knowledge (as of 2021 February) of aerosols for exoplanet atmospheres, highlight the importance of ongoing laboratory experiments and development of theoretical methods. A recent review by Sciamma-O'Brien and

⁵⁹https://petitradtrans.readthedocs.io/en/latest/content/available_opacities.html

Table 14. Sources for the reflectance data of various materials typically used in (exo)planetary surface models.

Name	Reflectance	Optical constants	Link
SSHADE	X	X	https://www.sshade.eu/
USGS-Speclab	X	–	https://crustal.usgs.gov/speclab/
RELAB	X	–	https://sites.brown.edu/relab/relab-spectral-database/
ECOSTRESS	X	–	https://speclib.jpl.nasa.gov
Mineral and rock sample Database University of Winnipeg	X	–	https://www.uwinnipeg.ca/c-tape/sample-database.html
PTAL	X	–	http://erica.uva.es/PTAL/

Drant & Wogan (2024) further highlights the importance of measured optical constants of laboratory aerosols for interpreting *JWST* observations.

As mentioned in Section 6.1.3, there are several groups with different laboratory setups who are working on measuring the optical properties of different aerosol analogues. Collaborations are currently ongoing between LATMOS (Gavilan et al. 2018; Drant et al. 2024) and NASA Ames (Sciamma-O'Brien et al. 2023) to compare optical properties found with different laboratory setups. Such collaborations will provide more complete data sets and help better understand implications for future observations. Work is ongoing to combine different laboratory spectroscopic measurements in order to provide continuous data of refractive indices across a broad spectral range covering the ranges of *JWST* and *Ariel*; see for example, He et al. (2024) and Drant et al. (2024) for current examples of this.

For condensation curve data, work is ongoing from groups such as those at NASA Ames, where three groups are working independently to address the different properties and optical constants required for accurate condensation curves.

6.4 Data needs: what's missing and urgent?

(i) **Wavelength coverage:** as shown in Table 12, the available data for a number of aerosols do not have the wavelength-coverage required to cover the observational range of *Ariel* (0.5–7.8 μm) and/or other telescopes related to exoplanet atmospheres such as *JWST* (~ 0.6 –28.5 μm , with the LRS instrument covering ~ 5 –13 μm). We also note that refractive indices are important for modelling reflectance spectra of exoplanets and their atmospheres, including albedo in the visible region (see for example, Chubb et al. 2023; Krenn et al. 2023).

(ii) **Temperature-dependence:** As mentioned above, the main spectral features of aerosols which could be observed in exoplanet atmospheres using *JWST*, for example, may be shifted at high-temperatures in comparison to room-temperature (Zeidler et al. 2013, 2015), making high-temperature measurements of refractive indices of high priority. Zeidler et al. (2013, 2015) demonstrate the temperature-dependence of optical properties (i.e. refractive indices) of aerosol particles such as enstatite and olivine which are expected in typical hot gas giant exoplanets. Zeidler et al. (2015) demonstrate the vibrational bands of olivine and enstatite becoming broader and redshifted with increasing temperature; see for example, their figs 2–7. It is assumed a similar effect will be found in other species, however there are no available studies on temperature dependence for the vast majority of refractive indices and most are therefore only available for terrestrial temperatures. Obtaining newer high temperature data for a wide range of other species important in higher temperature atmospheres would greatly aid in the analysis of observed spectra from missions such as *JWST* and *Ariel*. Reflectance spectra and

refractive indices above 500–600 K are also important for surfaces, but at such high temperatures are usually not available.

For ices, important for characterizing cooler solar system bodies, three types of temperature effects are usually considered (Schmitt et al. 1998): (i) Phase transitions upon heating, irreversible for some cases, can lead to profound changes in spectral features. (2) Thermal annealing, also associated with irreversible reorganization of amorphous to more ordered structure resulting in a progressive shift and narrowing of the bands. (3) Thermal contraction of the crystal and phonon–phonon interactions can lead to a change of the spectroscopic bands with a complex temperature behaviour depending on many factors including the solid structure, phase etc, with the bandwidth generally increasing on heating. This change is reversible upon temperature.

For cooler Solar system conditions, the temperature dependence of the refractive index have been studied, e.g. by Warren & Brandt (2008) and Biermann, Luo & Peter (2000). The temperature dependence of the refractive index of H_2O has been investigated recently by He et al. (2022c) between 30 K and 160 K (see their fig. 7). These results for water and other small molecules are available in the Leiden Ice Data base for Astrochemistry–LIDA (Rocha et al. 2022). From what we know about ices, there is a clear temperature dependence which for H_2O results in a roughly 10 per cent increase from 30 K to 160 K (He et al. 2022c).

Like for the majority of the data types considered in this work, more laboratory studies, especially at warmer conditions, are needed for refractive indices.

(iii) **A guide on what tools to use:** computing cloud opacities from refractive index data requires some additional assumptions, including the shape of the cloud particles, and whether the particles are mixed composition. For example, Mie computations are fast but only applicable for spherical particles, while the discrete dipole approximation (DDA) (Draine & Flatau 1994) or T -matrix method (Mackowski & Mishchenko 1996) are very accurate for non-spherical particles which can be composed of multiple materials, but also computationally expensive. There are some methods which lie between these extremes, allowing for the computation of scattering and absorption coefficients for non-spherical particle shapes, at a lower cost but typically also lower accuracy than DDA. For example the distribution of hollow spheres (DHS) method (Min et al. 2005) is thought to be a good compromise between accuracy and speed, with the option to choose a degree of irregularity of the particles. The DHS method has been used in studies such as Dyrek et al. (2024). There is also the modified mean field theory (MMF) method, designed for computing opacities of dust aggregates (Tazaki & Tanaka 2018). Photochemical hazes are well described by mean field approximations, as the solid particles produced by photochemistry coagulate at relatively high pressures in the atmosphere and form fractal aggregates of spherical particles (Botet, Rannou & Cabane 1997). The fractal meanfield scattering code of Botet et al. (1997),

available on GitHub,⁶⁰ can be used to get the optical properties of fractal aggregates using refractive indices and fractal dimension as inputs. A recent study by Lodge et al. (2023) investigates the differences which result in the use of the Mie, MMF, and DDA approaches, and demonstrates that using a lower resolution for DDA can also be a good compromise in terms of accuracy and speed. There has been a call amongst some users of atmospheric modelling and retrieval codes for some simple tools to create and read-in cloud opacities. There are two approaches here: either the code reads in refractive indices and particle sizes, and uses Mie theory or similar (DHS is available as part of the ARCiS (Min et al. 2020) code, for example) to compute opacities on the fly; or pre-computed grids of opacities for various species, particle sizes, and shapes, can be read in. Codes such as YunMa (Ma et al. 2023) assume spherical particle sizes. For surfaces, simple linear mixing of pure component spectra can be easily surpassed by more advanced radiative transfer models, such as Hapke's (Hapke 1993). The effect of the surface texture (compactness, roughness, and grain size) should be also taken into account if the actual data contains sufficient information to retrieve these parameters.

(iv) **Amorphous versus crystalline forms:** there is some discussion in the literature over whether crystalline or amorphous structures are expected under certain situations. It is thought that condensates are typically crystalline if their condensation time-scale is faster than their annealing time-scale, and amorphous if the opposite is true. This is because in the former case the condensates can rearrange quickly enough to form the crystalline structure, but if the condensation occurs much faster than the formed condensate will be amorphous (Gail & Sedlmayr 1999; Herbort et al. 2020). Grant et al. (2023) demonstrate the impact of choosing either amorphous or crystalline structures for their refractive indices of solid-state SiO₂, with some resulting small differences between their retrieved spectra of WASP-17 b. It is therefore important for refractive indices for both crystalline and amorphous forms to be available for models. Helling (2021) calls for opacity data for condensates across large wavelengths ranges and crystalline species, along with opacity modelling for non-spherical and charged cloud particles.

(v) **Additional species:** it has been noted by members of the community that sulphuric acid-based aerosols are of interest but are missing from the list of available aerosol refractive indices.

(vi) **Condensation curves:** these are required for all species in order to correctly predict their presence in exoplanet atmospheres, over a large range of pressures and temperatures. As mentioned above, fig. 4 of Gail et al. (2013) illustrates the considerable difference between condensation curves of SiO using different measured data, with the newer measurements allowing SiO to be present in solid form up to higher temperatures than the older ones. This highlights the importance of laboratory data for cloud modelling.

(vii) **In-situ measurements of reflectance:** as noted in this section, these data are available from different sources (see Table 14), but not available in one easily accessible data base.

(viii) **Cloud nucleation parameters:** constraints on the surface tension, contact angles, and similar parameters are required for the description of cloud nucleation (Arfaux & Lavvas 2024). These are typically used even for non-molecular condensates, which are characterized by the absence of the corresponding condensing species in the gas phase e.g. MgSiO₃ and Na₂S (Arfaux & Lavvas 2024), thus a better understanding of the heterogeneous mechanisms at play for these cases is also needed.

⁶⁰https://github.com/storyofthewolf/fractal_optics_coreshell.git

(ix) **Laboratory data to aid understanding of the coupling of haze and clouds:** it is becoming more evident with the latest observations that the coupling of haze and clouds is important (see for example, Arfaux & Lavvas 2024). To better understand this coupling, experiments that investigate the potential of haze particles acting as nucleation sites for the condensation of anticipated condensates in exoplanet atmospheres are needed.

7 ATMOSPHERIC CHEMISTRY

Data required for atmospheric chemistry models appropriate for exoplanet atmospheres primarily include thermochemical data for equilibrium networks, and collision and reaction rates for kinetic networks.

7.0.1 Equilibrium chemistry

There are a variety of codes designed to model chemical equilibrium in atmospheres, including exoplanet atmospheres. For example, ACE (Agúndez et al. 2012, 2020), FastChem⁶¹ (Stock et al. 2018; Stock, Kitzmann & Patzer 2022), and GGchem⁶² (Woitke et al. 2018) all work by minimizing the Gibbs free energy of the system for a given pressure and temperature. The minimization of Gibbs free energy requires thermochemical data as input. Many codes make use of the algorithm of Gordon & McBride (1994) to compute the free energy minimization.

Here we give a little more context to what data are required for codes such as these. Each species is characterized by two sets of thermochemical coefficients, that can be in a 7-format or in a 9-format. The 9-format, being a more recent one, permits more accurate calculations. There is a set for the 'high-temperature' range and another one for the 'low-temperature' range. For each of these ranges, thermochemical properties of each species in the normal conditions enthalpy (h^0) and entropy (s^0) can be calculated thanks to the NASA polynomials. For the 7-format, the expressions are:

$$\frac{h^0(T)}{RT} = a_1 + \frac{a_2 T}{2} + \frac{a_3 T^2}{3} + \frac{a_4 T^3}{4} + \frac{a_5 T^4}{5} + \frac{a_6 T^5}{T} \quad (7)$$

$$\frac{s^0(T)}{R} = a_1 \ln T + a_2 T + \frac{a_3 T^2}{2} + \frac{a_4 T^3}{3} + \frac{a_5 T^4}{4} + a_7. \quad (8)$$

The polynomials corresponding to the 9-format are slightly different:

$$\begin{aligned} \frac{h^0(T)}{RT} = & -a_1 T^{-2} + a_2 T^{-1} \ln T + a_3 + \frac{a_4 T}{2} \\ & + \frac{a_5 T^2}{3} + \frac{a_6 T^3}{4} + \frac{a_7 T^4}{5} + \frac{b_1}{T} \end{aligned} \quad (9)$$

$$\begin{aligned} \frac{s^0(T)}{R} = & -\frac{a_1 T^{-2}}{2} - a_2 T^{-1} + a_3 \ln T + a_4 T \\ & + \frac{a_5 T^2}{2} + \frac{a_6 T^3}{3} + \frac{a_7 T^4}{4} + b_2. \end{aligned} \quad (10)$$

With these two quantities calculated, the Gibbs Free Energy of the system can be calculated:

$$G_{sys} = \sum_l^L \left(h_l^0(T) - T s_l^0(T) + RT \ln \frac{P}{P_0} + RT \ln N_l \right) \times N_l \quad (11)$$

The sets of N_l that will minimize this equation (the Gibbs Free Energy of the system) will correspond to the composition at thermochemical equilibrium. Some data bases which gather equilibrium

⁶¹<https://github.com/exoclime/FastChem>

⁶²<https://github.com/pw31/GGchem>

thermodynamic coefficients for large sets of species are listed in Section 7.1.1.

7.0.2 Disequilibrium chemistry

In addition to equilibrium chemistry, some codes include disequilibrium chemistry processes (i.e. quenching induced by vertical mixing, photodissociation, condensation and evaporation, surface deposition, outgassing, and atmospheric escape) that control the atmospheric chemical composition (i.e. García Muñoz 2007; Moses et al. 2011; Venot et al. 2012, 2020; Tremblin et al. 2016; Rimmer & Helling 2016; Tsai et al. 2017; Al-Refaei et al. 2022). These codes require data adapted to the type of exoplanets studied. For instance, for warm exoplanets, such as hot Jupiters, data which are validated/measured/calculated at high temperatures are necessary. The data are: chemical schemes, that is to say a list of hundreds to thousands of reactions, with the associated reaction rates, but also physicochemical data for photodissociations (UV absorption cross-sections and quantum yields). Thermodynamic data are also necessary to calculate reverse reactions rates.

7.1 State-of-the-art – data availability

7.1.1 Equilibrium chemistry

The C/H/O/N (CHON) chemical species included in ACE (Agúndez et al. 2012, 2020) are mainly sourced from Gordon & McBride (1994), Atkinson et al. (2004, 2006, 2007) and Bounaceur et al. (2010), with some constants computed using THERGAS (Muller et al. 1995). ACE is commonly used in conjunction with chemical kinetic models by Venot et al. (2012, 2020) and in the more recently re-written Python version FRECKLL (Al-Refaei et al. 2022). FastChem (Stock et al. 2018, 2022) sources their thermochemical data from the NIST-JANAF data base (Chase 1998).⁶³ A version of FastChem has recently been released which includes equilibrium condensation and rainout (Kitzmann, Stock & Patzer 2023), and comes with a python interface. GGchem (Woitke et al. 2018) uses multiple sources of thermochemical data, with new species continuously added to the data files on the GitHub page. The sources for their chemical data comes from Barklem & Collet (2016), NIST-JANAF (Chase 1998) and Tsuji (1973). Appendix C of Woitke et al. (2018) includes a comparison of the molecular equilibrium constants collected from various sources; the full comparison data can be found at Worters et al. (2017). A graphical comparison of mineral Gibbs free energy data can also be found at Woitke et al. (2017). Other sources of thermochemical data include the Burcat data base (Burcat et al. 2005)⁶⁴ and Sharp & Huebner (1990). Recently, Wang et al. (2023a) provided NASA polynomials for 464 molecules with an emphasis on those species which are important for exoplanets.

7.1.2 Disequilibrium chemistry

Concerning chemical schemes, one major difficulty is to get data corresponding to the temperature of exoplanets. Due to long-standing studies of Solar System bodies, most of the chemical schemes developed for planetology are valid for low-temperature medium (e.g. Atreya & Gu 1994; Moses et al. 2005, 2018, Dobrijevic et al. 2014, 2016). However, in the combustion domain, many studies regarding

chemical kinetics at high temperatures have been performed in the last few decades and can be relevant for modelling the atmospheres of exoplanets (e.g. Cathornt, Boettner & James 1982; Kéromnès et al. 2013; Burke et al. 2016). Based on this fact, Venot et al. (2012, 2015, 2020) and Veillet et al. (2024) have developed and updated reliable chemical schemes validated through combustion experiments for CHON species. These schemes have been validated on a large range of temperatures and pressures, typically 500–2500 K and 10^{-6} –100 bar, thanks to comparisons with many experimental data sets (Veillet et al. 2024). This range of validation is probably adequate, as the chemical composition of the upper part of the atmosphere, which might in certain cases be at lower temperatures than 500 K, is mainly governed by photolysis processes and/or vertical mixing-induced quenching. Even if those have not been validated with the same methodology as the aforementioned ones, chemical schemes with sulphur have also been developed and presented in various studies, such as Zahnle et al. (2016), Tsai et al. (2021), and Hobbs et al. (2021). The network of Tsai et al. (2021) was recently used to contextualize the photochemically produced SO_2 feature detection in the atmosphere of hot Jupiter WASP-39 b (Tsai et al. 2023). Other disequilibrium chemical schemes tailored for exoplanets include the STAND network (Rimmer & Helling 2016), which includes effects of UV photochemistry, cosmic ray chemistry, and lightning-driven chemistry, and the network of Moses et al. (2010) which uses thermochemical/photochemical kinetics and transport models. ExoREL (Hu 2019, 2021) is a code to compute disc-averaged reflected-light spectra at any planetary phase, taking into account the radiative properties of clouds and their feedback on planetary albedo.

Data bases such as the JPL Chemical Kinetics and Photochemical Data data base,⁶⁵ the KInetic Database for Astrochemistry (KIDA) data base⁶⁶ (Wakelam et al. 2012), the NIST chemical kinetic data base,⁶⁷ and the UMIST Data base for Astrochemistry (UDfA)⁶⁸ (Millar et al. 2024) are all sources of kinetic and photochemical data. KIDA provides evaluations of reaction rates and uncertainties, and contains chemical schemes used in planetology. Concerning UV photochemical data, very few data exist at high temperatures. Venot et al. (2013, 2018b) studied experimentally the thermal dependence of carbon dioxide and its impact on atmospheric composition and Fleury et al. (2023a) studied the one of C_2H_2 . Grosch, Fateev & Clausen (2015) measured UV absorption cross-sections of sulphur-containing compounds at elevated temperatures. See Section 8 for details on UV photodissociation and photoabsorption cross-sections.

7.2 Data used by retrieval codes

7.2.1 Equilibrium chemistry

Many of the aforementioned equilibrium chemistry codes are included in various atmospheric modelling and retrieval codes, such as TauREx3 (Al-Refaei et al. 2021) where ACE is included as standard with the option to include others using the plugin feature of TauREx 3.1, and ARCI s (Ormel & Min 2019; Min et al. 2020), where GGchem (Woitke et al. 2018) is fully integrated. FastChem (Stock et al. 2018, 2022) is the main chemical model used in the HELIOS radiative transfer code (Malik et al. 2017; Kitzmann

⁶⁵<https://jpodataeval.jpl.nasa.gov/index.html>

⁶⁶<https://kida.astrochem-tools.org/>

⁶⁷<https://kinetics.nist.gov/kinetics/>

⁶⁸<http://udfa.ajmarkwick.net>

et al. 2020). Other codes such as petitRADTRANS (Mollière et al. 2019) and Exo-REM (Baudino et al. 2015) include self-written chemical routines. For example, easyCHEM is a self-written Gibbs free energy minimizer which is included in petitRADTRANS and described in Mollière et al. (2017). Al-Refaie et al. (2022) compares computed atmospheric spectra of a hot gas giant exoplanet using some of the available equilibrium chemistry codes plugged into TauREx3; ACE (Agúndez et al. 2012, 2020), FastChem (Stock et al. 2018), GGchem (Woitke et al. 2018), and also GGchem with condensation included. Jaziri et al. (2024) explore the reliability of 1D equilibrium chemistry models to predict the composition of 3D exo-atmospheres with simulated transmission spectra of *Ariel* and *JWST* observations. They use the ACE chemical scheme in the TauREx retrieval code. ATMO (Tremblin et al. 2015; Tremblin et al. 2016) is a radiative/convective equilibrium code which is coupled to the CHNO-based chemical network of Venot et al. (2012).

7.2.2 Disequilibrium chemistry

In addition to equilibrium chemistry, some atmospheric retrieval codes explicitly parametrize the disequilibrium chemistry process of quenching. For example, Kawashima & Min (2021) outlines the disequilibrium chemistry scheme included in atmospheric retrieval and modelling code ARCiS (Ormel & Min 2019; Min et al. 2020), which includes vertical mixing of CH₄, CO, H₂O, NH₃, N₂, and CO₂. ARCiS uses thermochemical data collated as part of GGchem (mentioned above; Woitke et al. 2018), along with some extra species sourced from Burcat et al. (2005) and Ruscic et al. (2005). Recently, a step forward has been made with TauREx3 using the kinetic code FRECKLL (Full and Reduced Exoplanet Chemical Kinetics distiLLed) as a plugin (Al-Refaie et al. 2022), in order to perform retrievals taking into account chemical kinetics. The kinetic network included in FRECKLL is based on the chemical scheme of Venot et al. (2020). VULCAN is another open source chemical kinetics code for exoplanetary atmospheres, written in python (Tsai et al. 2017). Their paper describes the rate coefficients and thermodynamic data used in the network. ATMO (Tremblin et al. 2015; Tremblin et al. 2016) includes a kinetic chemical network, as well as the equilibrium chemistry network described above. HyDRA (Gandhi & Madhusudhan 2017) is a disequilibrium retrieval framework for thermal emission spectra of exoplanetary atmospheres.

7.3 What's being worked on?

A chemical scheme validated through combustion experiment coupling CHON species to sulphur species is currently in progress and should be published in 2024 (Veillet et al., in preparation). There is currently work underway to include P and S in CHON chemical schemes, using ab initio methods. Sticking coefficients of gas phase molecules onto solid atmospheric haze are currently in progress and should be published in 2024 (Perrin et al., in preparation). Several UV absorption cross sections (NH₃, HCN, SO₂) are currently under study at LISA with their own UV platform and will be published in the coming years (Collado et al., in preparation).

7.4 Data needs: what's missing and urgent?

(i) **Rocky exoplanets:** data for rocky exoplanets require chemical networks that include many different species, which can be much more complex than what is usually the case for hydrogen-dominated atmospheres. These species include KOH, NaOH, SiO₂, CaOH, FeO,

MgO, MgOH, as outlined in works such as Tennyson & Yurchenko (2017) and Herbort et al. (2020)

(ii) **Reaction rates for various different molecules:** Helling (2021) call for more thermochemical data, particularly reaction rates, for elements other than CHON(S). This has been pointed out by others, for example for phosphine (Bains et al. 2021), which is applicable to Venus as well as exoplanet atmospheres; for chlorine-bearing species which would be helpful for Mars; and species such as TiO and VO for high-temperature exoplanet atmospheres. Other elements which ideally would be included in chemical schemes include Si, Mg, Na, K, Ca, and Al (Fortney et al. 2019).

(iii) **Reaction rates for ions:** ion chemistry may affect the deeper layers of the atmosphere through, for example, the formation of haze. The ionosphere is also relevant because it connects with the upper atmospheres and therefore with the long-term evolution of the planet's composition.

(iv) **Reaction rate coefficients at a variety of pressures and temperatures:** Reaction rates must therefore be known at temperatures ranging from ~ 30 K to above 3000 K, and because the deep atmospheric layers are chemically mixed with the layers probed by spectroscopic observations, at pressures up to about ~ 100 bar.

(v) **Condensation:** some codes, such as GGchem (Woitke et al. 2018) and the latest version of FastChem (Kitzmann et al. 2023), already include condensation. Expanding more codes to explicitly include condensation and including additional elements in chemical networks will be useful to fully characterize where the elements of an atmosphere will go under chemical equilibrium conditions.

(vi) **Gas-particle processes:** when aerosol particles are present in the atmosphere, gas-particle chemistry has been shown to influence not only the particles, but also the atmospheric content (Cavalié et al. 2023; Petera et al. 2023, and Knížek et al., in preparation). For that purpose, sticking coefficients of gas components on solid particles are largely missing.

8 UV PHOTODISSOCIATION/PHOTOABSORPTION DATA

The need for a description of molecular absorption in the ultraviolet (UV) region is motivated mainly by the following two reasons: (1) direct observations in the UV, which are not in the *Ariel* instrumental range but are of relevance to a number of existing, past, or potential future instruments; the WFC3/UVIS instrument on board the *HST* (200–1000 μ m), the *Galaxy Evolution Explorer* (*GALEX*) (135–280 nm) (Viswanath et al. 2020), the Far Ultraviolet Spectroscopic Explorer (FUSE) (90.5–119.5 nm) (Moos, McCandliss & Kruck 2004), Cassini Ultra-violet Imaging Spectrograph (UVIS) (55.8–190 nm) (Esposito et al. 2004), and the Habitable Worlds Observatory (HWO) future mission concept; and (2) utilization in atmospheric chemistry calculations for considering the chemical consequences of photodissociation, see Section 7. For example, improving the cross-section data of H₂O in the vacuum ultraviolet (VUV, ~ 100 –200 nm) leads to significant changes in the outcome of photochemistry: for an abiotic habitable planet with an anoxic, CO₂-N₂ atmosphere orbiting a Sun-like star, it enhances the OH production which in turn suppresses a broad range of species in anoxic atmospheres (Ranjan et al. 2020), including H₂ and CH₄. This is just one mechanism, clearly showing the sensitivity of the models to UV cross-sections and thus highlighting the critical need for laboratory data used photochemical models, whether from measurements or calculations. The impact of the strong variation of CO₂ absorption cross-sections with temperature and photodissociation

rates of many species (CO₂, CH₄, NH₃) was demonstrated by Venot et al. (2018b).

The special but typical feature of molecular spectra in the UV/VUV wavelength region is their continuum. Their featureless character is due to the dissociative effects in the high energy/low wavelength region. It is this type of spectra produced by transitions to or from states above a dissociation limit and caused by the dissociation that we mainly discuss in this section. Photoabsorption includes both bound–bound transitions (these appear as either sharp lines or continuum) and bound-free photodissociation (continuum) transitions, see e.g. Pezzella, Yurchenko & Tennyson (2021) and Tennyson et al. (2023). Bound-bound transitions which result in sharp lines are often included as part of a line list which extends into the UV region (see Section 2). These types of spectra can be completely featureless for transitions to the continuum (from bound states to fully unbound, or dissociative states, e.g. HF above 100–160 nm; Pezzella et al. 2022) or mostly consisting of sharp lines (from bound to bound or quasi-bound states, e.g. MgH in the A-X band at 0.5 μm; Owens et al. 2022a), or anything in between (Pezzella et al. 2022). Both continuum absorption and photodissociation need to be represented as cross-sections rather than the lines of a typical line list, as they are continuum processes.

This creates challenges not only for the production of UV spectral data but also for its provision and format. For the featureless UV spectra, it is natural to provide data in the form of temperature dependent cross-sections. This is the format of the MPI-Mainz UV/VIS Spectral Atlas⁶⁹ (Keller-Rudek et al. 2013) and Leiden⁷⁰ (Heays, Bosman & van Dishoeck 2017; Hrodmarsson & Van Dishoeck 2023) data bases. In cases where the cross-sections are dominated by the continuum, the pressure effect is considered to be negligible, but it is noteworthy that in cross-sections dominated by resonances to Rydberg and valence states, high pressures can significantly affect the absorption cross-sections. Such effects have been observed in NO where transitions to Rydberg states were significantly broadened and shifted up until 1000 bar where the Rydberg states have all but vanished from the spectrum (Miladi et al. 1975; Miladi, Roncin & Damany 1978). However, most UV spectra comprise a mixture of the bound–bound transitions (sharper lines) and continuum.

8.1 State-of-the-art – data availability

One of the main sources of photodissociation cross-sections of molecules is the Leiden data base,⁷¹ which provides photodissociation and photoionization cross-sections for 116 atoms and molecules of astrochemical interest collected from the literature, both experimental and theoretical (Heays et al. 2017; Hrodmarsson & Van Dishoeck 2023). The photodissociation thresholds and threshold products provided by this data base are summarized in Table 15, and the provided photoionization thresholds summarized in Table 16 for molecules at low (interstellar/terrestrial) temperatures. The PHIDRATES website⁷² provides a set of tools to calculate photoionization, photodissociation, and photodissociative ionization rate coefficients (Huebner, Keady & Lyon 1992). There is also the MPI-Mainz UV/VIS Spectral Atlas⁷³ (Keller-Rudek et al. 2013), where experimental temperature-dependent cross-sections for a

larger number of molecules are provided. We note, however, that there are some limitations in terms of temperature-dependence and wavelength coverage of the data in cross-section data bases such as these, so it is worth checking the range of temperatures covered by the cross-sections for each species of interest.

In the past few years, there have been multiple VUV cross-sections (photoabsorption and photoionization) measured at the VUV DESIRS beamline at the SOLEIL synchrotron facility in France (Nahon et al. 2012). Absolute photoabsorption cross-sections have been measured using a Fourier-transform absorption cell (de Oliveira et al. 2016) where multiple species have been measured such as OH (Heays et al. 2018), CO (Hakalla et al. 2016; Lemaire et al. 2018), S₂ (Stark et al. 2018), SO (Heays et al. 2023), and others. Absolute photoionization cross-sections of radical species have been measured with the double-imaging photoelectron photoion (i2PEPICO) instrument DELICIOUS3 (Garcia et al. 2013) where the radicals were produced continuously in a stable manner with a flow tube (Garcia et al. 2015). This has allowed the measurements of photoionization cross-sections of species such as OH (Harper et al. 2019), NH₂ (Harper et al. 2021), SH (Hrodmarsson et al. 2019), and others. In the frame of the EXACT project⁷⁴ VUV absorption cross-sections are also measured experimentally. The first species studied was carbon dioxide (Venot et al. 2013; Venot et al. 2018b).

Regarding computations of photoionization or photoabsorption, the XCHEM code has recently been used to compute the photoionization of H₂O (Fernández-Milán et al. 2023), and also the valence-shell photoionization of CO₂ (Pranjal et al. 2024). Photoabsorption cross-sections for atmospheric volatile organic compounds (VOCs) have been computed by Prlj et al. (2020, 2022), using a combination of time-dependent and time-independent methods. Ndengue et al. (2023) explore the temperature dependence of the electronic absorption spectrum of NO₂ up to 2200 K, down to a wavelength of 0.25 μm (up to 40 000 cm⁻¹) by combining ab initio methods with high-resolution experiments. Xue, Barbatti & Dral (2020) utilize machine learning methods for the computation of absorption cross-sections in the visible and UV wavelength region, including benzene. Machine learning algorithms for the computation of electronically excited states are also utilized by Sršen & Slavíček (2021) and Sršen, von Lilienfeld & Slavíček (2024).

Collections of theoretical UV cross-sections of PAHs are available online⁷⁵ (Malloci, Joblin & Mulas 2007) and measurements of the cross-sections of cationic PAHs (Zhen et al. 2016; Wenzel et al. 2020) have been used recently by Berné et al. (2022) to show the importance of up-to-date experimental measurements to understand the contribution of the ionization of PAH cations to a variety of environments.

The ExoMol data base has started providing photoabsorption and photodissociation data, see Tennyson et al. (2023). This will include UV line lists (bound–bound transitions only), UV photoabsorption cross-sections (bound–continuum only) and separately full temperature dependent photoabsorption cross-sections (all together). The data are produced with essentially the same computational ExoMol methodology used for production of line lists, see Section 2.1.1 (ExoMol) i.e. a mixture of first-principle quantum-mechanical calculations and empirical refinement, see Pezzella et al. (2021). As in the case of the line lists, the advantage of theoretical spectra is in the completeness at higher temperatures. ExoMol also provides hosting for experimental VUV/UV cross-sections of molecules (Fateev et al.,

⁶⁹<https://www.uv-vis-spectral-atlas-mainz.org/uvis/>

⁷⁰<https://home.strw.leidenuniv.nl/~ewine/photo/index.html>

⁷¹<https://home.strw.leidenuniv.nl/~ewine/photo/index.html>

⁷²<https://phidrates.space.swri.edu/>

⁷³<https://www.uv-vis-spectral-atlas-mainz.org/uvis/>

⁷⁴<https://www.anr-exact.cnrs.fr/>

⁷⁵<http://astrochemistry.ca.astro.it/database/pahs.html>

Table 15. Photodissociation thresholds and threshold products in the Leiden data base (Heays et al. 2017; Hrodmarsson & Van Dishoeck 2023).

Species	Photodis. products	Thresh Photodis	Species	Photodis. products	Thresh Photodis	Species	Photodis. products	Thresh Photodis
AlH	Al + H	392	CO ₂	CO + O	227	NH ₂ CHO	NH ₃ + CO	208
C ₂	C + C	193	CS	C + S	168	NH ₃	NH + H ₂	301
C ₂ H	C ₂ + H	253	CS ₂	CS + S	278	NO	N + O	191
C ₂ H ₂	C ₂ H + H	217	H ₂	H + H	274	NO ₂	NO + O	398
C ₂ H ₃	H ₂ CC + H	1240	H ₂ ⁺	H + H ⁺	290	NaCl	Na + Cl	293
C ₂ H ₄	C ₂ H ₂ + H ₂	258	H ₂ CO	H ₂ + CO	361	NaH	Na + H	606
C ₂ H ₅	C ₂ H ₄ + H	260	H ₂ CS	H ₂ + CS	313	O ₂	O + O	242
C ₂ H ₅ OH	C ₂ H ₅ O + H	208	H ₂ O	H + OH	242	O ₂ ⁺	O + O ⁺	186
C ₂ H ₆	C ₂ H ₅ + H	287	H ₂ O ₂	OH + OH	556	O ₃	O ₂ + O	1180
C ₃	C ₂ + C	268	H ₂ S	H + SH	318	OCS	CO + S	280
C ₃ H ₃	C ₃ H ₂ + H	300	HC ₃ H	I-C ₃ H + H	400	OH	O + H	279
C ₃ H ₇ OH	C ₃ H ₇ O + H	208	HC ₃ N	H + C ₃ N	244	OH ⁺	O ⁺ + H	247
CH	C + H	358	HCN	H + CN	243	PH	P + H	398
CH ⁺	C + H ⁺	303	HCO	H + CO	2037	PH ⁺	P ⁺ + H	369
CH ₂	C + H	417	HCO ⁺	H + CO ⁺	145	S ₂	S + S	283
CH ₂ ⁺	CH ⁺ + H	204	HCOOH	H + HCOO	333	SH	S + H	345
CH ₃	CH + H ₂	271	HCl	H + Cl	279	SH ⁺	S ⁺ + H	320
CH ₃ CHO	HCO + CH ₃	342	HCl ⁺	H + Cl ⁺	267	SO	S + O	233
CH ₃ OCH ₃	CH ₃ O + CH ₃	196	HF	H + F	211.4	SO ₂	O + SO	219
CH ₃ OCHO	HCO + CH ₃	248	HNC	H + CN	165	SiH	Si + H	417
CH ₃ CN	CH ₂ CN + H	308	HNCO	NH + CO	333	SiH ⁺	Si ⁺ + H	391
CH ₃ NH ₂	CH ₃ NH + H	244	HO ₂	H + O ₂	476	SiO	Si + O	150
CH ₃ OH	CH ₃ O + H	280	LiH	Li + H	579	c-C ₃ H	C ₃ + H	289
CH ₃ SH	CH ₃ S + H	331	MgH	Mg + H	623	c-C ₃ H ₂	c-C ₃ H + H	284
CH ₄	CH ₃ + H	277	N ₂	N + N	127	SiO	Si + O	150
CH ₄ ⁺	CH ₃ ⁺ + H	1031	N ₂ O	N ₂ + O	735	I-C ₃ H	C ₃ + H	379
CN	C + N	160	NH	N + H	362	I-C ₃ H ₂	I-C ₃ H + H	320
CO	C + O	110	NH ⁺	N ⁺ + H	281	I-C ₄	C ₃ + C	263
CO ⁺	C ⁺ + O	149	NH ₂	NH + H	314	I-C ₄ H	C ₄ + H	267
-	-	-	-	-	-	I-C ₅ H	C ₅ + H	348

Table 16. Ionization thresholds in the Leiden data base (Heays et al. 2017; Hrodmarsson & Van Dishoeck 2023).

Species	Thresh Photoion	Species	Thresh Photoion	Species	Thresh Photoion	Species	Thresh Photoion
Al	207	CH ₃ OH	113	HCO	152	O ₂	103
AlH	156	CH ₃ SH	131	HCOOH	110	O ₃	99
C	110	CH ₄	98	HCl	97	OCS	111
C ₂	102	CN	87	HF	77.5	OH	95
C ₂ H	107	CO	88	HNC	103	P	118
C ₂ H ⁻	412	CO ₂	90	HNCO	108	PH	122
C ₂ H ₂	109	CS	110	HO ₂	109	Rb	297
C ₂ H ₃	147	CS ₂	123	K	286	S	120
C ₂ H ₄	118	Ca	203	Li	230	S ₂	133
C ₂ H ₅	153	Ca ⁺	104	LiH	152	SH	119
C ₂ H ₅ OH	119	Cl	96	Mg	162	SO	120
C ₂ H ₆	108	Co	158	Mn	167	SO ₂	100
C ₃	102	Cr	183	N	85	Si	152
C ₃ H ₃	143	Fe	158	N ₂	79	SiH	156
C ₃ H ₇ OH	123	H	91	N ₂ O	96	SiO	108
C ₂ H ⁻	348	H ⁻	1470	NH	92	Ti	182
C ₆ H ⁻	327	H ₂	82	NH ₂	111	Zn	132
CH	117	H ₂ CO	114	NH ₂ CHO	121	c-C ₃ H	129
CH ₂	119	H ₂ CS	135	NH ₃	122	c-C ₃ H ₂	136
CH ₃	126	H ₂ O	98	NO	134	I-C ₃ H	136
CH ₃ CHO	121	H ₂ O ₂	117	NO ₂	127	I-C ₃ H ₂	119
CH ₃ OCH ₃	127	H ₂ S	119	Na	241	I-C ₄	116
CH ₃ OCHO	113	HC ₃ H	139	NaH	179	I-C ₄ H	129
CH ₃ CN	102	HC ₃ N	107	Ni	162	I-C ₅ H	168
CH ₃ NH ₂	135	HCN	91	O	91	-	-

in preparation). The recent AloHa AlH line list gives an example of the treatment of mixed spectral lines and continuum absorption in UV (Yurchenko et al. 2024c) while Pezzella et al. (2022) gives an example of photodissociation cross-sections.

Absolute VUV branching ratios (sometimes known as quantum yields) of molecules are generally not very well known, in part due to the experimental difficulties of measuring them. Rotationally resolved absolute photodissociation branching ratios of small molecules like CO (Gao et al. 2020b, 2013; Ranjan et al. 2020), CO₂ (Lu et al. 2014), N₂ (Song et al. 2016; Shi et al. 2017), and others have been obtained using two tunable VUV laser systems. Other advancements have been in the use of VUV free electron lasers such as the one in the Dalian Light Source in China, where VUV photodissociation branching ratios have been measured for species such as H₂S (Zhou et al. 2020), CS₂, and OCS along with even more recent results of H₂O (Chang et al. 2023; Wogan et al. 2024). There are more recent measurements in the context of exoplanet atmospheres that are noteworthy such as recent measurements of ethane (C₂H₆) (Chang et al. 2020) considering its relevance to both Hycean atmospheres and Enceladus. As the sizes of molecules grow, the fragmentation patterns become more difficult to disentangle. In the case of C₂H₆, there are seventeen different fragmentation channels available at the Ly α limit, each other with different sets of fragmentation products which can be formed in various electronically excited states.

Regarding the electronically excited species, to a zeroth order approximation the electronic fluorescence proceeds faster than the collision frequency in the atmosphere in question. The validity of this approximation is dependent on the pressure and temperature of the relevant environments but typically non-dissociative fluorescence lifetimes of small molecules are of the order of one to a few microseconds. For environments where collision rates and these fluorescence rates are comparable, collisions with electronically excited species should not be neglected because they could lead to different photochemical paradigms that are currently neglected in most atmospheric models. For example, when H₂O is photodissociated from the D state, OH is formed in the electronically excited A state which has a fluorescent lifetime of 1 ms (Livingston Large & Kiewer 2024).

8.2 What's being worked on?

(i) ExoMol is working on producing temperature-dependent UV photoabsorption and photodissociation data for a variety of molecules including OH, SO, and HCN.

(ii) Recently, acetylene has been measured (Fleury et al. 2023a) and more data are to be published soon (Fleury et al., in preparation), as part of the EXACT project,⁷⁶ where UV absorption cross-sections are measured experimentally. The EXACT project aims to measure UV absorption cross-sections at high temperatures for many species, using their experimental setup at LISA.

(iii) VUV photoabsorption cross-sections and VUV photoionization cross-sections are currently being studied for a number of molecules at the DESIRS beamline at the SOLEIL synchrotron facility in France. Current efforts involve sulphur-containing species; photoabsorption cross-section of CS and C₂ will be measured and the photoionization cross-sections of sulphur containing radicals such as CCS will be investigated.

(iv) PAHs: similar to the recent experimental work of Chowdhury et al. (2024) on the cyanonaphthalenes, the photoionization of a large sample of neutral PAHs of varying sizes and symmetries are being investigated (Hrodmarsson et al., in preparation) to improve previous experimental data on PAH photoabsorption data from the 1990's (Verstraete et al. 1990; Tobita et al. 1994; Jochims, Baumgaertel & Leach 1996; Jochims et al. 1997; Jochims, Baumgärtel & Leach 1999) currently in use to describe the contribution of neutral PAHs to the gas heating in the ISM. At the LISA laboratory, UV absorption cross-sections for several molecules of atmospheric importance are currently under study. A future instrumental direction at LISA is to construct a double VUV laser system with a VMI spectrometer that will be dedicated to measuring VUV branching ratios of molecules of interest to exoplanet atmospheres.

8.3 Data needs: what's missing and urgent?

(i) **Photoabsorption cross-sections at high temperatures:** Fortney et al. (2019) (a collaborative Astro2020 Science White Paper) expressed the need for photoabsorption cross-sections measurements and their temperature dependence in the VUV wavelength range (115–230 nm) for molecules such as N₂, O₂, O₃, H₂O, CO, CO₂, CH₄, NH₃, TiO, VO, HCN, C₂H₂, H₂S, PH₃.

(ii) **Branching ratios:** Despite a huge progress in laboratory provision of branching ratios, e.g. Burkholder et al. (2020), more data for atmospheric studies is needed (Jenkin et al. 2019; Gao et al. 2020b).

(iii) **Non-LTE:** most photodissociation cross sections come from the study of molecules in thermal equilibrium. However, there it is generally accepted that the upper atmospheres of most observable exoplanets are not thermal and so Non-LTE cross-sections will be needed.

9 DATA STANDARDS

9.1 Principles of and need for data standards

Standards for the description of atomic and molecular data are crucial for their effective use in the study of exoplanet atmospheres. The successful adoption of a set of standards for the description of species, quantum states, and spectroscopic processes facilitates interoperability between simulation codes, data exchange between researchers, the long-term preservation of data, and automatic processing of data, for example through application programming interfaces (APIs).

In any discussion about data standards a distinction must be made between metadata and data formats. All data sets are associated, implicitly or explicitly, with some set of conventions for describing metadata: the context, applicability, provenance, physical units, and additional information which give meaning to the raw numbers of the data themselves. The format in which these numerical data are provided may vary between databases (depending, for example, on the size of the data sets). However, an interoperable ecosystem of data bases must adopt standardized, unambiguous, and machine-readable metadata conventions to allow comparison and aggregation across data sets.

Modern data base services aspire to conform to so-called FAIR principles of data curation (Wilkinson et al. 2016); in brief, FAIR data are:

(i) Findable: associated with globally unique and persistent identifiers; registered in a searchable, online resource.

(ii) Accessible: retrievable through a standardized protocol.

⁷⁶<https://www.anr-exact.cnrs.fr/>

(iii) Interoperable: associated with metadata in a formal, well-described representation.

(iv) Reusable: clearly-licensed and documented, with detailed provenance and rich metadata attributes providing context to the data.

In the context of atomic and molecular data, the adoption of these principles can be realized as follows

(i) Atomic and molecular species and states should be specified using common identifiers.

(ii) Data sets, such as line lists and cross-sections, should be assigned globally unique identifiers and be locatable through these identifier using online services.

(iii) Where data sets are updated, older versions should be permanently available, identified and time-stamped.

(iv) All numerical data should be associated with clear metadata describing its format, physical units and limits of applicability (for example, valid temperature or pressure range).

(v) Digital object identifiers (DOIs) should be attached to data sets to permanently identify the origin of the data; typically such DOIs will refer to the data's associated publication, such as a journal article.

9.2 Focus on interoperability: VAMDC and other services

The Virtual Atomic and Molecular Data Centres (VAMDC) consortium (VAMDC 2014; Albert et al. 2020) is a group of research institutes that share a common technical and political framework for the distribution and curation of atomic and molecular data. The goal of the consortium is to build a software infrastructure allowing the linking and searching of multiple databases through a common data format ('XSAMS') and query language ('VSS2'). The VAMDC has built a platform (the 'portal') for the simultaneous search of, at the time of writing, 38 data bases and the aggregation of matching data sets. It now is concerned with further developing data standards, promoting collaboration in data production and evaluation, and in broadening its scope beyond spectroscopy and plasma physics. As machine learning matures and becomes more widely-adopted, the VAMDC is also exploring the application of artificial intelligence to its data services, to facilitate, for example, data transformation and visualization and to assist with the validation and aggregation of data.

An up-to-date summary of the current status of the VAMDC and its data base nodes can be found in the report of its most recent annual meeting, held as a Technical Meeting of the International Atomic Energy Agency in 2023 November (Hill 2023).

9.3 What's being worked on?

The PyValem software library (PyValem 2024) provides a framework of Python routines for parsing standardized, text-based representations of atomic and molecular species and states; the syntax of these representations is largely adopted by the HITRAN and ExoMol data bases, and is fully implemented in the CollisionDB data base (CollisionDB 2024; Hill et al. 2024) of plasma collisional processes. In addition to providing a common language for referring to species and states, this library can also perform a degree of validation on its input, for example by ensuring that quantum numbers are valid and reactions conserve stoichiometry and charge.

Several of the resources described in this paper expose an API for the automated querying and retrieval of atomic and molecular data; in addition to the VAMDC portal service outlined above, there are

well-documented APIs for the HITRAN, ExoMol, and CollisionDB data bases; the software tools for interacting with these APIs are either already available or under active development.

The MAESTRO data base, introduced in Section 4.2, is under ongoing development. It aims to create one uniform and standardized data base for opacities useful in the characterization of exoplanet atmospheres, and to aid in the establishment of community standards for computing opacity data (see e.g. Gharib-Nezhad et al. 2024).

9.4 Data standards needs: what's missing and urgent?

At the time of writing there are several competing standards for describing atomic and molecular species; whilst some of these are widely-adopted in some areas of chemistry and physics [for example, SMILES (Weininger 1988), or InChI / InChIKey strings (Heller et al. 2015)], there is no entirely satisfactory and easy-to-use standard for small molecules, particularly metal hydrides, in the context of astrophysical spectroscopy.

As described above, the line lists required of even relatively small molecules for spectroscopic modelling at elevated temperatures can become very large, with over 10^{10} individual transitions contributing the observable spectra. Therefore, data base services supporting the asynchronous retrieval of large data files are needed. New software tools are required for the visualization, validation, extraction and, potentially, reduction of such data sets. These tools should allow for the interconversion between popular data formats (XSAMS, HITRAN, ExoMol, and so on) and must be tested and maintained on a regular basis. In addition to improving usability, these tools can also perform the important function of validating the integrity of the data by checking for format consistency and data completeness.

A further issue is the complexity of the quantitative description of line broadening effects: this necessitates a flexible data model that can be applied to multiple data bases; at present different approaches are taken by those data bases that contain broadening data sets.

10 CONCLUSION

In this white paper we have focused on a number of different data types: molecular and atomic line lists (Section 2), molecular and atomic line shapes (Section 3), computed cross-sections and opacities (Section 4), CIA and other continuum data (Section 5), data for aerosols (Section 6), data for atmospheric chemistry models (Section 7), and data for UV photodissociation or photoabsorption (Section 8). Needs for data standards, metadata, existing rules, and associated tools were discussed in Section 9. For each data type we have focused on: data availability, what data is typically used by atmospheric modelling, and retrieval codes, what is missing and urgent, and what is currently being worked on. Of course the information provided in this paper is not comprehensive, but we have tried to give an overview for each data type for both data users and data providers.

We also note that there are some important data topics relating to exoplanet atmospheres which we do not address in this particular paper. For example, accurate data regarding stellar spectra are important for photochemistry (see Section 7) and UV photodissociation processes (see Section 8). The secondary eclipse measurement of a transiting exoplanet gives information on the emission and reflection spectra. These measurements are presented as a ratio of planetary flux to stellar flux, and therefore also require an accurate stellar flux model. We note there are some resources for theoretical models of

stellar spectra such as the Kurucz-Castelli grids of models⁷⁷ (Heiter et al. 2002; Castelli & Kurucz 2004), models from the SVO (Spanish Virtual Observatory),⁷⁸ which provides data for 70 collections of theoretical spectra and observational templates, and the PHOENIX stellar models⁷⁹ (Husser et al. 2013). The virtual planet laboratory regroups data from various publications,⁸⁰ and there are additional sources of stellar spectra available from the MUSCLES survey of 11 low-mass, planet-hosting stars⁸¹ (France et al. 2016). We refer to works such as Gandhi & Madhusudhan (2017), Shulyak et al. (2020) and Rackham et al. (2023) for further information on the topic of stellar spectra for use in characterizing exoplanet atmospheres.

Although the primary focus of the working group who initiated this white paper is for data needs appropriate for the *Ariel* space mission, we do discuss data for e.g. spectral regions which fall outside the observing window of *Ariel*. Such regions can be very useful for theoretical models which inform predictions for target planets for the *Ariel* mission, or for observations which are complementary to those planned by *Ariel*. Many of these data needs will be shared by all those in the exoplanet atmosphere community, not only those working directly on preparing for the *Ariel* space mission.

10.1 Ariel-data GitHub platform

The description of the data associated with this paper and the *Ariel* mission in general is available at GitHub via the project <https://github.com/Ariel-data>. The goal of this platform is to provide a go-to place both for the data-users and data-providers, for the users to highlight their data needs and make requests, and for the data providers to link to the available data. As an open access tool, GitHub provides huge advantages of forming direct dialogues between these sides of the community, where the modellers can make their shopping-lists for the data producers to start planning their calculations or experiments, even for those who are currently not directly involved in the *Ariel* consortium or in the field of exoplanetary science in general.

We invite everyone to test and make use of this system.

DATA AVAILABILITY

The data discussed in this paper will be available for access at GitHub via the project <https://github.com/Ariel-data>, which was created as a platform to bridge the two communities, data-providers and data-users. As an open platform, for the users, it provides an efficient way to communicate their needs, while the data providers can use it to make their work more visible. Any data-related GitHub ‘issues’ raised for the attention of the *Ariel* Working-Group will be visible to the entire community of the lab data providers, from experimentalists to theoreticians.

ACKNOWLEDGEMENTS

We thank the comprehensive efforts of the Reviewers for a number of constructive comments through the paper. The ExoMol project is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme through Advance Grant numbers 883830 (ExoMolHD). KLC was

funded by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee as part of an ERC Starter Grant [grant number EP/Y006313/1]. SY acknowledges funding by STFC Projects No. ST/Y001508/1. SR acknowledges funding by the Belgian Science Policy Office (BELSPO) through the FED-tWIN program (Prf-2019-077-RT-MOLEXO) and through financial and contractual support coordinated by the ESA Prodex Office (PEA 4000137943, 4000128137). AF acknowledges funding by the Knut and Alice Wallenberg Foundation (KAW 2020.0303) and the Swedish Research Council (2020-00238). This research was supported by the Excellence Cluster ORIGINS which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2094-390783311. AVN and OE acknowledge the support from the Russian Scientific Foundation (RSF, No. 22-42-09022). MR acknowledges support from the French ANR TEMMEX project (Grant 21-CE30-0053-01) and from the Romeo computer center of Reims Champagne-Ardenne. FS acknowledges support from the ‘Institut National des Sciences de l’Univers’ (INSU), the ‘Centre National de la Recherche Scientifique’ (CNRS), and ‘Centre National d’Etudes Spatiales’ (CNES) through the ‘Programme National de Planétologie’. TZ acknowledges NVIDIA Academic Hardware Grant Program for the use of the Titan V GPU card and the support by the CHEOPS ASI-INAF agreement n. 2019-29-HH.0 and the Italian MUR Departments of Excellence grant 2023-2027 ‘Quantum Frontiers’. ChH and HLM acknowledge funding from the European Union H2020-MSCA-ITN-2019 under grant agreement no. 860470 (CHAMELEON). OV acknowledges funding from the ANR project ‘EXACT’ (ANR-21-CE49-0008-01) and the Centre National d’Etudes Spatiales (CNES). This work was also supported by CNES, focused on *Ariel*, through ‘EXACT’. JKB is supported by an STFC Ernest Rutherford Fellowship, grant number ST/T004479/1. AM (Alessandra Migliorini) acknowledges funding from the Italian Space Agency (ASI) contract with the National Institute for Astrophysics (INAF) n. 2018-22-HH.0.1-2020. IS acknowledges the support by DFG (DFG, German Research Foundation)—project No. SA 4483/1-1. MR acknowledges the support by the DFG priority program SPP 1992 ‘Exploring the Diversity of Extrasolar Planets’ (DFG PR 36 24602/41). AK (Antonín Knížek) acknowledges support from grant no. 24-12656K by the Czech Science Foundation and the ESA Prodex project under PEA 4000129979. IEG and RJH acknowledge funding support through NASA grant 80NSSC23K1596 and NASA PDART grant 80NSSC24K0080. ZM acknowledges, through Centro de Química Estrutural, the financial support of Fundação para a Ciéncia e Tecnologia (FCT) for the projects UIDB/00100/2020 and UIDP/00100/2020, and through Institute of Molecular Sciences, the financial support of FCT for the project LA/P/0056/2020. AB was supported by the Italian Space Agency (ASI) with *Ariel* grant n. 2021.5.HH.0. NC thanks the European Research Council for funding via the ERC OxyPlanets project (grant agreement No. 101053033).

REFERENCES

- ⁷⁷<http://kurucz.harvard.edu/grids.html>
- ⁷⁸<http://svo2.cab.inta-csic.es/theory/newov2/index.php>
- ⁷⁹<https://phoenix.astro.physik.uni-goettingen.de/>
- ⁸⁰<https://vpl.uw.edu/models/spectral-database-tools/>
- ⁸¹<https://archive.stsci.edu/prepds/muscles/>

Adil M., Giri B. R., Elkhazraji A., Farooq A., 2023, *J. Quant. Spectrosc. Radiat. Transfer*, 300, 108522

Adkins E. M., Karman T., Campargue A., Mondelain D., Hodges J. T., 2023, *J. Quant. Spectrosc. Radiat. Transfer*, 310, 108732

Adler F., Thorpe M. J., Cossel K. C., Ye J., 2010a, *Annu. Rev. Anal. Chem.*, 3, 175

Adler F., Maslowski P., Foltynowicz A., Cossel K. C., Briles T. C., Hartl I., Ye J., 2010b, *Opt. Express*, 18, 21861

Agúndez M., Venot O., Iro N., Selsis F., Hersant F., Hébrard E., Dobrijevic M., 2012, *A&A*, 548, A73

Agúndez M., Martínez J. I., de Andres P. L., Cernicharo J., Martín-Gago J. A., 2020, *A&A*, 637, A59

Al-Derzi A. R., Furtenbacher T., Tennyson J., Yurchenko S. N., Császár A. G., 2015, *J. Quant. Spectrosc. Radiat. Transfer*, 161, 117

Al-Derzi A. R. et al., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 266, 107563

Al-Refaei A. F., Yurchenko S. N., Yachmenev A., Tennyson J., 2015, *MNRAS*, 448, 1704

Al-Refaei A. F., Polyansky O. L., Ovsyannikov R. I., Tennyson J., Yurchenko S. N., 2016, *MNRAS*, 461, 1012

Al-Refaei A. F., Changeat Q., Waldmann I. P., Tinetti G., 2021, *AJ*, 917, 37

Al-Refaei A. F., Changeat Q., Venot O., Waldmann I. P., Tinetti G., 2022, *ApJ*, 932, 123

AlSaif B. et al., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 211, 172

Alatoom D., Ibrahim M. T. I., Furtenbacher T., Császár A. G., Alghizzawi M., Yurchenko S. N., Azzam A. A. A., Tennyson J., 2024, *J. Comput. Chem.*, 45, 2558

Albert D. et al., 2020, *Atoms*, 8, 76

Alberti M., Weber R., Mancini M., Fateev A., Clausen S., 2015, *J. Quant. Spectrosc. Radiat. Transfer*, 157, 14

Alderson L. et al., 2023, *Nature*, 614, 664

Allard N. F., Kielkopf J. F., 1982, *Rev. Mod. Phys.*, 54, 1103

Allard N. F., Royer A., Kielkopf J. F., Feautrier N., 1999, *Phys. Rev. A*, 60, 1021

Allard N. F., Spiegelman F., Kielkopf J. F., 2016, *A&A*, 589, A21

Allard N. F., Spiegelman F., Leininger T., Mollière P., 2019, *A&A*, 628, A120

Allard N. F., Myneni K., Blakely J. N., Guillou G., 2023, *A&A*, 674, A171

Allard N. F., Kielkopf J. F., Myneni K., Blakely J. N., 2024, *A&A*, 683, A188

Alrefae M., Es-sebbar E.-t., Farooq A., 2014, *J. Mol. Spectrosc.*, 303, 8

Amaral P. H. R., Diniz L. G., Jones K. A., Stanke M., Alijah A., Adamowicz L., Mohalem J. R., 2019, *ApJ*, 878, 95

Anderson P. W., 1949, *Phys. Rev.*, 76, 647

Andrieu F., Doute S., Schmidt F., Schmitt B., 2015, *Appl. Optics*, 54, 9228

Anisman L. O., Chubb K. L., Elsey J., Al-Refaei A., Changeat Q., Yurchenko S. N., Tennyson J., Tinetti G., 2022a, *J. Quant. Spectrosc. Radiat. Transfer*, 278, 108013

Anisman L. O., Chubb K. L., Changeat Q., Edwards B., Yurchenko S. N., Tennyson J., Tinetti G., 2022b, *J. Quant. Spectrosc. Radiat. Transfer*, 283, 108146

Antony B. K., Gamache P. R., Szembek C. D., Niles D. L., Gamache R. R., 2006, *Mol. Phys.*, 104, 2791

Arcangeli J. et al., 2018, *ApJ*, 855, L30

Arfaux A., Lavvas P., 2024, *MNRAS*, 530, 482

Aringer B., Girardi L., Nowotny W., Marigo P., Lederer M. T., 2009, *A&A*, 503, 913

Armstrong B., 1967, *J. Quant. Spectrosc. Radiat. Transfer*, 7, 61

Atkinson R. et al., 2004, *Atmos. Chem. Phys.*, 4, 1461

Atkinson R. et al., 2006, *Atmos. Chem. Phys.*, 6, 3625

Atkinson R. et al., 2007, *Atmos. Chem. Phys.*, 7, 981

Atreya S. K., Gu Z. G., 1994, *J. Geophys. Res.*, 99, 13133

Azzam A. A. A., Yurchenko S. N., Tennyson J., Naumenko O. V., 2016, *MNRAS*, 460, 4063

Ba Y. A. et al., 2013, *J. Quant. Spectrosc. Radiat. Transfer*, 130, 62

Bailey J., Kedziora-Chudczer L., 2012, *MNRAS*, 419, 1913

Bains W. et al., 2021, *Astrobiology*, 21, 1277

Balashov A. A. et al., 2023, *J. Chem. Phys.*, 158, 234306

Baldacchini G., D'Amato F., Buffa G., Tarrini O., De Rosa M., Pelagalli F., 2001, *J. Quant. Spectrosc. Radiat. Transfer*, 68, 625

Baranger M., 1958a, *Phys. Rev.*, 111, 481

Baranger M., 1958b, *Phys. Rev.*, 111, 494

Baranger M., 1958c, *Phys. Rev.*, 112, 855

Baranov Y. I., 2018, *J. Mol. Spectrosc.*, 345, 11

Baranov Y. I., Vigasin A. A., 1999, *J. Mol. Spectrosc.*, 193, 319

Baranov Y. I., Lafferty W. J., Fraser G. T., 2004, *J. Mol. Spectrosc.*, 228, 432

Baranov Y., Lafferty W., Fraser G., 2005, *J. Mol. Spectrosc.*, 233, 160

Baranov Y. I., Lafferty W. J., Ma Q., Tipping R. H., 2008, *J. Quant. Spectrosc. Radiat. Transfer*, 109, 2291

Barber R. J., Strange J. K., Hill C., Polyansky O. L., Mellau G. C., Yurchenko S. N., Tennyson J., 2014, *MNRAS*, 437, 1828

Barklem P. S., Collet R., 2016, *A&A*, 588, A96

Barrado D. et al., 2023, *Nature*, 624, 263

Barrientos J. G., MacDonald R. J., Lewis N. K., Kaltenegger L., 2023, *ApJ*, 946, 96

Barshay S. S., Lewis J. S., 1976, *Annu. Rev. Astron. Astrophys.*, 14, 81

Barstow J. K., Changeat Q., Garland R., Line M. R., Rocchetto M., Waldmann I. P., 2020, *MNRAS*, 493, 4884

Barstow J. K., Changeat Q., Chubb K. L., Cubillos P. E., Edwards B., MacDonald R. J., Min M., Waldmann I. P., 2022, *Exp. Astron.*, 53, 447

Barth E. L., 2017, *Planet Space Sci.*, 137, 20

Barton E. J., Yurchenko S. N., Tennyson J., 2013, *MNRAS*, 434, 1469

Barton E. J., Chiu C., Golpayegani S., Yurchenko S. N., Tennyson J., Frohman D. J., Bernath P. F., 2014, *MNRAS*, 442, 1821

Barton E. J., Yurchenko S. N., Tennyson J., Clausen S., Fateev A., 2015, *J. Quant. Spectrosc. Radiat. Transfer*, 167, 126

Barton E. J., Hill C., Czurylo M., Li H. Y., Hyslop A., Yurchenko S. N., Tennyson J., 2017, *J. Quant. Spectrosc. Radiat. Transfer*, 203, 490

Bar-Ziv E., Weiss S., 1972, *J. Phys. Chem.*, 57, 34

Batalha N., Rooney C., MacDonald R., 2021, *natashabatalha/picaso: Release 2.2*, Zenodo, available at: <https://zenodo.org/records/5093710>

Batalha N. et al., 2022, *Bull. Am. Astron. Soc.*, 54 102.371

Baudino J.-L., Bézard B., Boccaletti A., Bonnefoy M., Lagrange A.-M., Galicher R., 2015, *A&A*, 582, A83

Baumann E., Giorgetta F. R., Swann W. C., Zolot A. M., Coddington I., Newbury N. R., 2011, *Phys. Rev. A*, 84, 062513

Bauschlicher C. W., Ricca A., Boersma C., Allamandola L. J., 2018, *ApJS*, 234, 32

Beale C. A., Hargreaves R. J., Bernath P. F., 2016, *J. Quant. Spectrosc. Radiat. Transfer*, 182, 219

Beale C. A., Hargreaves R. J., Coles P., Tennyson J., Bernath P. F., 2017, *J. Quant. Spectrosc. Radiat. Transfer*, 203, 410

Begemann B., Dorschner J., Henning T., Mutschke H., Gürtler J., Kömpe C., Nass R., 1997, *ApJ*, 476, 199

Bell T. J. et al., 2024, *Nat. Astron.*, 8, 879

Benneke B. et al., 2024, preprint ([arXiv:2403.03325](https://arxiv.org/abs/2403.03325))

Bergeron P., Saumon D., Wesemael F., 1995, *ApJ*, 443, 764

Berman P. R., 1972, *J. Quant. Spectrosc. Radiat. Transfer*, 12, 1331

Bernath P. F., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 240, 106687

Bernath P. F., Colin R., 2009, *J. Mol. Spectrosc.*, 257, 20

Bernath P., Fernando A. M., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 269, 107644

Bernath P. F., Dodangodage R., Liévin J., 2022, *J. Mol. Spectrosc.*, 933, 99

Bernath P. F., Dodangodage R., Zhao J., Billingham B., 2023, *J. Quant. Spectrosc. Radiat. Transfer*, 296, 108462

Berné O., Foschino S., Jalabert F., Joblin C., 2022, *A&A*, 667, A159

Bézard B., Fedorova A., Bertaux J.-L., Rodin A., Koralev O., 2011, *Icarus*, 216, 173

Bharadwaj S. P., Modest M. F., 2007, *J. Quant. Spectrosc. Radiat. Transfer*, 103, 146

Biermann U. M., Luo B. P., Peter T., 2000, *J. Phys. Chem. A*, 104, 783

Bilger C., Rimmer P., Helling C., 2013, *MNRAS*, 435, 1888

Bittner D. M., Bernath P. F., 2018, *ApJS*, 235, 8

Blake D. R., Chen T.-Y., Smith Jr. T. W., Wang C. J.-L., Wingenter O. W., Blake N. J., Rowland F. S., Mayer E. W., 1996, *J. Geophys. Res.-Atmosphere*, 101, 1763

Boersma C. et al., 2014, *ApJS*, 211, 8

Boone C., Walker K., Bernath P., 2007, *J. Quant. Spectrosc. Radiat. Transfer*, 105, 525

Bordet B., Kassi S., Campargue A., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 260, 107453

Borysow A., 2002, *A&A*, 390, 779

Borysow A., Frommhold L., 1986a, *ApJ*, 303, 495

Borysow A., Frommhold L., 1986b, *ApJ*, 304, 849

Borysow A., Frommhold L., 1987, *ApJ*, 318, 940

Borysow A., Tang C., 1993, AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 25, 25.12

Borysow A., Moraldi M., Frommhold L., 1984, *J. Quant. Spectrosc. Radiat. Transfer*, 31, 235

Botet R., Rannou P., Cabane M., 1997, *Appl. Opt.*, 36, 8791

Boudon V., Champion J.-P., Gabard T., Loëte M., Rotger M., Wenger C., 2011, in Quack M., Merkt F., eds, *Handbook of High-Resolution Spectroscopy*, Vol. 3. Wiley, Chichester, West Sussex, p. 1437

Bounaceur R. et al., 2010, in *SAE 2010 World Congress & Exhibition*. SAE International, Warrendale, Pennsylvania

Bourgalis J. et al., 2020, *ApJ*, 895, 77

Bowesman C. A., Shuai M., Yurchenko S. N., Tennyson J., 2021, *MNRAS*, 508, 3181

Bowesman C. A., Akbari H., Hopkins S., Yurchenko S. N., Tennyson J., 2022, *J. Quant. Spectrosc. Radiat. Transfer*, 289, 108295

Bowesman C. A. et al., 2023, *MNRAS*, 519, 6333

Bowesman C. A., Qu Q., McKemmish L. K., Yurchenko S. N., Tennyson J., 2024, *MNRAS*, 529, 1321

Brady R. P., Yurchenko S. N., Tennyson J., Kim G.-S., 2024, *MNRAS*, 527, 6675

Brassé C., Muñoz O., Coll P., Raulin F., 2015, *Planet Space Sci.*, 109-110, 159

Brogi M., Line M. R., 2019, *ApJ*, 157, 114

Bromley S. T., Gómez Martín J. C., Plane J. M. C., 2016, *Phys. Chem. Chem. Phys.*, 18, 26913

Bromm V., Larson R. B., 2004, *ARA&A*, 42, 79

Bromm V., Yoshida N., Hernquist L., McKee C. F., 2009, *Nature*, 459, 49

Brooke J. S. A., Bernath P. F., Schmidt T. W., Bacska G. B., 2013, *J. Quant. Spectrosc. Radiat. Transfer*, 124, 11

Brooke J. S. A., Bernath P. F., Western C. M., Sneden C., Afsar M., Li G., Gordon I. E., 2016, *J. Quant. Spectrosc. Radiat. Transfer*, 168, 142

Buck A. L., 1981, *J. Appl. Meteorol. Clim.*, 20, 1527

Buehler S. A., Brath M., Lemke O., Hodnebrog Ø., Pincus R., Eriksson P., Gordon I., Larsson R., 2022, *J. Adv. Model. Earth Syst.*, 14, e2022MS003239

Bui T. Q., Changala P. B., Bjork B. J., Yu Q., Wang Y., Stanton J. F., Bowman J., Ye J., 2018, *Mol. Phys.*, 116, 3710

Buldyreva J., Daneshvar L., 2013, *J. Chem. Phys.*, 139, 164107

Buldyreva J., Bonamy J., Robert D., 1999, *J. Quant. Spectrosc. Radiat. Transfer*, 62, 321

Buldyreva J. V., Gennadiev N. A., Filippov N. N., 2013, *J. Chem. Phys.*, 138, 164117

Buldyreva J., Yurchenko S. N., Tennyson J., 2022, *RASTI*, 1, 43

Buldyreva J., Brady R. P., Yurchenko S. N., Tennyson J., 2024, *J. Quant. Spectrosc. Radiat. Transfer*, 313, 108843

Burcat A., Ruscic B., Chemistry and Technion - Israel Inst. of Tech., 2005, Technical Report, *Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion (with update from Active Thermochemical Tables)*. Argonne National Lab. (ANL), Argonne, IL

Burgasser A. J., Burrows A., Kirkpatrick J. D., 2006, *ApJ*, 639, 1095

Burke U., Metcalfe W. K., Burke S. M., Heufer K. A., Dagaut P., Curran H. J., 2016, *Combust. Flame*, 165, 125

Burkholder J. et al., 2020, Technical Report, Chemical Kinetics and Photochemical Data for use in Atmospheric Studies; Evaluation Number 19, Jet Propulsion Laboratory, Pasadena. Available at: <http://jpldataeval.jpl.nasa.gov>

Burrows A., Volobuyev M., 2003, *ApJ*, 583, 985

Burrows A., Dulick M., Bauschlicher C. W., Bernath P. F., Ram R. S., Sharp C. M., Milsom J. A., 2005, *ApJ*, 624, 988

Bykov A. D., Lavrentieva N. N., Sinitsa L. N., 2004, *Mol. Phys.*, 102, 1653

Cameron W. D., Bernath P., 2022, *ApJ*, 926, 39

Campargue A., Karlovets E. V., Vasilchenko S. S., Turbet M., 2023, *Phys. Chem. Chem. Phys.*, 25, 32778

Campbell J. M., Klapstein D., Dulick M., Bernath P. F., Wallace L., 1995, *ApJS*, 101, 237

Castelli F., Kurucz R. L., 2004, preprint ([arXiv:astro-ph/0405087](https://arxiv.org/abs/astro-ph/0405087))

Cathonet M., Boettner J. C., James H., 1982, *J. Chim. Phys.*, 79, 475

Catling D. C., Kasting J. F., 2017, *Atmospheric Evolution on Inhabited and Lifeless Worlds*. Cambridge Univ. Press, Cambridge, UK

Cavalié T. et al., 2023, *Nat. Astron.*, 7, 1048

Cerezo M. et al., 2021, *Nat. Rev. Phys.*, 3, 625

Chakraborty S. et al., 2024, *A&A*, 681, A39

Chang C., Patzer A. B. C., Kegel W. H., Chandra S., 2013, *Astrophys. Space Sci.*, 347, 315

Chang Y. et al., 2020, *Chem. Sci.*, 11, 5089

Chang Y., Ashfold M. N. R., Yuan K., Yang X., 2023, *Natl. Sci. Rev.*, 10, nwad158

Changala P. B., Spaun B., Patterson D., Doyle J. M., Ye J., 2016, *Appl. Phys. B*, 122, 292

Changala P. B., Weichman M. L., Lee K. F., Fermann M. E., Ye J., 2019, *Science*, 363, 49

Changeat Q., Yip K. H., 2023, *RASTI*, 2, 45

Changeat Q. et al., 2022, *ApJS*, 260, 3

Changeat Q. et al., 2024, *ApJS*, 270, 34

Charnay B., Blain D., Bézard B., Leconte J., Turbet M., Falco A., 2021, *A&A*, 646, A171

Chase M. 1998, *NIST-JANAF Thermochemical Tables*, 4th Edition. Am. Inst. Phys., New York

Chen M., Felmy A. R., Dixon D. A., 2014, *J. Phys. Chem. A*, 118, 3136

Chen J., Hua T. P., Tao L. G., Sun Y. R., Liu A. W., Hu S. M., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 205, 91

Chistikov D. N., Finenko A. A., Lokshtanov S. E., Petrov S. V., Vigasin A. A., 2019, *J. Phys. Chem.*, 151, 194106

Cho J. Y.-K., Skinner J. W., Thrastarson H. T., 2021, *ApJ*, 913, L32

Chowdhury P. K., Merer A. J., Rixon S. J., Bernath P. F., Ram R. S., 2006, *Phys. Chem. Chem. Phys.*, 8, 822

Chowdhury M. R., Garcia G. A., Hrodmarsson H. R., Loison J.-C., Nahon L., 2024, *ApJ*, 963, 29

Chubb K. L. et al., 2018a, *J. Quant. Spectrosc. Radiat. Transfer*, 204, 42

Chubb K. L. et al., 2018b, *J. Quant. Spectrosc. Radiat. Transfer*, 218, 178

Chubb K. L., Tennyson J., Yurchenko S. N., 2020a, *MNRAS*, 493, 1531

Chubb K. L. et al., 2020b, *A&A*, 646, A21

Chubb K. L., Stam D. M., Helling C., Samra D., Carone L., 2023, *MNRAS*, 527, 4955

Civiš S., Pastorek A., Ferus M., Yurchenko S. N., Boudjema N.-I., 2023, *Molecules*, 28, 3362

Clark V. H. J., Owens A., Tennyson J., Yurchenko S. N., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 246, 106929

Cloutis E. A. 2015, Technical Report: Mineral and Rock Sample Database Planetary Spectrohrometer Facility (PSF). University of Winnipeg, Winnipeg, Canada

Coddington I., Newbury N., Swann W., 2016, *Optica*, 3, 414

Coheur P.-F. et al., 2005, *J. Chem. Phys.*, 122, 074307

Cole R. K., Tran H., Hoghooghi N., Rieker G. B., 2023, *J. Quant. Spectrosc. Radiat. Transfer*, 297, 108488

Coles P. A., Yurchenko S. N., Kovacich R. P., Hobby J., Tennyson J., 2019a, *Phys. Chem. Chem. Phys.*, 21, 3264

Coles P. A., Yurchenko S. N., Tennyson J., 2019b, *MNRAS*, 490, 4638

Colin R., Bernath P. F., 2010, *J. Mol. Spectrosc.*, 263, 120 1

CollisionDB, 2024, CollisionDB: A database of plasma collisional processes. Available at: <https://amdis.iaeae.org/db/collisiondb/>

Conrath B. J., Gierasch P. J., Ustinov E. A., 1998, *Icarus*, 135, 501

Coppola C. M., Lodi L., Tennyson J., 2011, *MNRAS*, 415, 487

Cossel K. C. et al., 2012, *Chem. Phys. Lett.*, 546, 1

Coxon J. A., Hajigeorgiou P. G., 2015, *J. Quant. Spectrosc. Radiat. Transfer*, 151, 133

Crawford M. F., Welsh H. L., Locke J. L., 1949, *Phys. Rev.*, 75, 1607

Cristallo S., Straniero O., Lederer M. T., Aringer B., 2007, *AJ*, 667, 489

Cubillos P. E., Blecic J., 2021, *MNRAS*, 505, 2675

Cui W., Zhang J., Schmidt F., Cui D., Huang X., Li T., Tian F., 2018, *Earth Planet. Phys.*, 2, 247

Siciliani de Cumis M., Eramo R., Coluccelli N., Galzerano G., Laporta P., Cencio Pastor P., 2018, *J. Chem. Phys.*, 148, 114303

Curtis D. B., Hatch C. D., Hasenkopf C. A., Toon O. B., Tolbert M. A., McKay C. P., Khare B. N., 2008, *Icarus*, 195, 792

Cybulski H., Bielski A., Ciurylo R., Szudy J., Trawinski R., 2013, *J. Quant. Spectrosc. Radiat. Transfer*, 120, 90

D'Eru J.-F., Lemoine B., Rohart F., 2002, *J. Mol. Spectrosc.*, 212, 96

Darby-Lewis D., Tennyson J., Lawson K. D., Yurchenko S. N., Stamp M. F., Shaw A., Brezinsek S., JET Contributor, 2018, *J. Phys. B: At. Mol. Opt. Phys.*, 51, 185701

De Lucia F. C., Green S., 1988, *J. Mol. Struct.*, 190, 435

de Vanssay E., Gazeau M. C., Guillemin J. C., Raulin F., 1995, *Planet Space Sci.*, 43, 25

DeWitt H. L. et al., 2009, *Astrobiology*, 9, 447

Deguine A., Petitprez D., Clarisse L., Guilmundsson S., Outes V., Villarosa G., Herbin H., 2020, *Appl. Opt.*, 59, 884

Delahaye T., Landsheere X., Pangui E., Huet F., Hartmann J. M., Tran H., 2016, *J. Quant. Spectrosc. Radiat. Transfer*, 184, 316

Delahaye T., Armante R., Scott N. A., Jacquinet-Husson N. et al., 2021, *J. Mol. Spectrosc.*, 380, 111510

Devi V. M. et al., 2016, *J. Quant. Spectrosc. Radiat. Transfer*, 177, 152

Di Biagio C. et al., 2019, *Atmos. Chem. Phys.*, 19, 15503

Ding X.-L., Xue W., Ma Y.-P., Wang Z.-C., He S.-G., 2009, *J. Phys. Chem.*, 130, 014303

Ding Y., Strand C. L., Hanson R. K., 2019, *J. Quant. Spectrosc. Radiat. Transfer*, 224, 396

Diouf M. L., Tóbiás R., Simkó I., Cozijn F. M. J., Salumbides E. J., Ubachs W., Császár A. G., 2021, *J. Phys. Chem. Ref. Data*, 50, 023106

Diouf M. L., Tóbiás R., van der Schaaf T. S., Cozijn F. M. J., Salumbides E. J., Császár A. G., Ubachs W., 2022, *Mol. Phys.*, 120, e2050430

Dobrijevic M., Hébrard E., Loison J. C., Hickson K. M., 2014, *Icarus*, 228, 324

Dobrijevic M., Loison J. C., Hickson K. M., Gronoff G., 2016, *Icarus*, 268, 313

Dodangodage R., Bernath P. F., Zhao J., Billingham B., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 253, 107131

Dominik C., Min M., Tazaki R., 2021, Astrophysics Source Code Library, record ascl:2104.010

Domylowska J. et al., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 242, 106789

Dorschner J., Begemann B., Henning T., Jaeger C., Mutschke H., 1995, *A&A*, 300, 503

Draine B. T., Flatau P. J., 1994, *J. Opt. Soc. Am. A*, 11, 1491

Draine B. T., Li A., 2007, *ApJ*, 657, 810

Drant T. et al., 2024, *A&A*, 682, A6

Drouin B. J. et al., 2017, *J. Quant. Spectrosc. Radiat. Transfer*, 186, 118

Dubey D., Grubel F., Arenales-Lope R., Molaverdikhani K., Ercolano B., Rab C., Trapp O., 2023, *A&A*, 678, A53

Dubois D., Iraci L. T., Barth E. L., Salama F., Vinatier S., Sciamma-O'Brien E., 2021, *Planet. Sci. J.*, 2, 121

Dudaryonok A. S., Lavrentieva N. N., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 219, 360

Dudás E. et al., 2023, *Icarus*, 394, 115421

Dypvik H. et al., 2021, *Planet Space Sci.*, 208, 105339

Dyrek A. et al., 2024, *Nature*, 625, 51

Edwards B., Tinetti G., 2022, *AJ*, 164, 15

Edwards B. et al., 2019a, *Exp. Astron.*, 47, 29

Edwards B., Mugnai L., Tinetti G., Pascale E., Sarkar S., 2019b, *AJ*, 157, 242

Encrenaz T., Coustenis A., Gilli G., Marcq E., Molaverdikhani K., Mugnai L. V., Ollivier M., Tinetti G., 2022, *Exp. Astron.*, 53, 375

Ercolano B., Rab C., Molaverdikhani K., Edwards B., Preibisch T., Testi L., Kamp I., Thi W.-F., 2022, *MNRAS*, 512, 430

Es-sebbar E.-t., Farooq A., 2014, *J. Quant. Spectrosc. Radiat. Transfer*, 149, 241

Esposito L. W. et al., 2004, *Space Sci. Rev.*, 115, 299

Fairman C., Wakeford H. R., MacDonald R. J., 2024, *AJ*, 167, 240

Fakhraei W., Boulet C., Tran H., Hartmann J.-M., 2022, *J. Quant. Spectrosc. Radiat. Transfer*, 283, 108148

Fano U., 1961, *Phys. Rev.*, 124, 1866

Farmer C. B., Houghton J. T., 1966, *Nature*, 209, 1341

Fauchez T., Rossi L., Stam D. M., 2017, *ApJ*, 842, 41

Fernández-Milán P., Borràs V. J., González-Vázquez J., Martín F., 2023, *J. Phys. Chem.*, 158, 134305

Filippov N. N., Aspin R. E., Sinyakova T. N., Grigoriev I. M., Petrova T. M., Solodov A. M., Solodov A. A., Buldyreva J. V., 2013, *Phys. Chem. Chem. Phys.*, 15, 13826

Finenko A. A., Chistikov D. N., Kalugina Y. N., Conway E. K., Gordon I. E., 2021, *Phys. Chem. Chem. Phys.*, 23, 18475

Finenko A. A., Bézard B., Gordon I. E., Chistikov D. N., Lokshinov S. E., Petrov S. V., Vigasin A. A., 2022, *ApJS*, 258, 33

Fletcher L. N., Gustafsson M., Orton G. S., 2018, *ApJS*, 235, 24

Fleurbaey H., Reed Z. D., Adkins E. M., Long D. A., Hodges J. T., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 270, 107684

Fleurbaey H., Mondelain D., Fakhraei W., Hartmann J.-M., Campargue A., 2022, *J. Quant. Spectrosc. Radiat. Transfer*, 285, 108162

Fleurbaey H., Čermák P., Campargue A., Kassi S., Romanini D., Votava O., Mondelain D., 2023, *Phys. Chem. Chem. Phys.*, 25, 16319

Fleury B., Poveda M., Bénilan Y., Venot O., 2023a, in N'Diaye M. et al., eds, Proc. Annual meeting of the French Society of Astronomy and Astrophysics (SF2A-2023). French Society of Astronomy and Astrophysics, Strasbourg, p. 377

Fleury B., Benilan Y., Venot O., Henderson B. L., Swain M., Gudipati M. S., 2023b, *ApJ*, 956, 134

Flint A. R., Fortenberry R. C., 2023, *ACS Earth Space Chem.*, 7, 2119

Foley H., 1946, *Phys. Rev.*, 69, 616

Foltynowicz A., Ban T., Maslowski P., Adler F., Ye J., 2011, *Phys. Rev. Lett.*, 107, 233002

Foltynowicz A. et al., 2021a, *Phys. Rev. A*, 103, 022810

Foltynowicz A. et al., 2021b, *Phys. Rev. Lett.*, 126, 063001

Fortney J. et al., 2019, *Astro2020: Decadal Survey on Astronomy and Astrophysics*, 2020, 146

Fraine J. et al., 2021, *AJ*, 161, 269

France K. et al., 2016, *ApJ*, 820, 89

Frohman D. J., Bernath P. F., Brooke J. S. A., 2016, *J. Quant. Spectrosc. Radiat. Transfer*, 169, 104

Furtenbacher T., Császár A. G., Tennyson J., 2007, *J. Mol. Spectrosc.*, 245, 115

Furtenbacher T., Szabó I., Császár A. G., Bernath P. F., Yurchenko S. N., Tennyson J., 2016, *ApJS*, 224, 44

Furtenbacher T., Coles P. A., Tennyson J., Yurchenko S. N., Yu S., Drouin B., Tóbiás R., Császár A. G., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 251, 107027

Gail H. P., Sedlmayr E., 1999, *A&A*, 347, 594

Gail H.-P., Wetzel S., Pucci A., Tamani A., 2013, *A&A*, 555, A119

Galatry L., 1961, *Phys. Rev.*, 122, 1218

Galli I., Pastor P. C., Di Lonardo G., Fusina L., Giusfredi G., Mazzotti D., Tamassia F., De Natale P., 2011, *Mol. Phys.*, 109, 2267

Galli I. et al., 2013, *Mol. Phys.*, 111, 2041

Gamache R. R., Vispoel B., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 217, 440

Gamache R. R. et al., 2017, *J. Quant. Spectrosc. Radiat. Transfer*, 203, 70

Gamache R. R., Vispoel B., Rey M., Nikitin A., Tyuterev V., Egorov O., Gordon I. E., Boudon V., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 271, 107713

Gandhi S., Madhusudhan N., 2017, *MNRAS*, 474, 271

Gandhi S. et al., 2020, *MNRAS*, 495, 224

Gandhi S. et al., 2023, *AJ*, 165, 242

Gao H., Song Y., Chang Y.-C., Shi X., Yin Q.-Z., Wiens R. C., Jackson W. M., Ng C. Y., 2013, *J. Phys. Chem. A*, 117, 6185

Gao P. et al., 2020a, *Nat. Astron.*, 4, 951

Gao H., Song Y., Jackson W. M., Ng C.-Y., 2020b, *Chin. J. Chem. Phys.*, 33, 91

Gao P., Wakeford H. R., Moran S. E., Parmentier V., 2021, *J. Geophys. Res.: Planets*, 126, e2020JE006655

García Muñoz A., 2007, *Planet Space Sci.*, 55, 1414

García Muñoz A., Asensio Ramos A., Faure A., 2024, *Icarus*, 415, 116080

Garcia G. A., de Miranda B. K. C., Tia M., Daly S., Nahon L. 2013, *Rev. Sci. Instrum.*, 84, 053112

Garcia G. A. et al., 2015, *J. Chem. Phys.*, 142, 164201

Gavilan L., Carrasco N., Hoffmann S. V., Jones N. C., Mason N. J., 2018, *ApJ*, 861, 110

Geballe T. R., Saumon D., Golimowski D. A., Leggett S. K., Marley M. S., Noll K. S., 2009, *ApJ*, 695, 844

Georges R., Thiévin J., Benidar A., Carles S., Amyay B., Louvrot M., Boudon V., Vander Auwera J., 2019, *Rev. Sci. Instrum.*, 90, 093103

Germann M. et al., 2022, *J. Quant. Spectrosc. Radiat. Transfer*, 288, 108252

Germann M. et al., 2024, *J. Quant. Spectrosc. Radiat. Transfer*, 312, 108782

Gharib-Nezhad E., Line M. R., 2019, *AJ*, 872, 27

Gharib-Nezhad E., Shayesteh A., Bernath P. F., 2013, *MNRAS*, 432, 2043

Gharib-Nezhad E., Heays A. N., Bechtel H. A., Lyons J. R., 2019, *J. Quant. Spectrosc. Radiat. Transfer*, 239, 106649

Gharib-Nezhad E., Iyer A. R., Line M. R., Freedman R. S., Marley M. S., Batalha N. E., 2021, *ApJS*, 254, 34

Gharib-Nezhad E. S. et al., 2024, *RASTI*, 3, 44

Ghysels M., Vasilchenko S., Mondelain D., Béguier S., Kassi S., Campargue A., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 215, 59

Gobrecht D., Cristallo S., Piersanti L., Bromley S. T., 2017, *ApJ*, 840, 117

Gobrecht D., Decin L., Cristallo S., Bromley S. T., 2018, *Chem. Phys. Lett.*, 711, 138

Gobrecht D., Plane J. M. C., Bromley S. T., Decin L., Cristallo S., Sekaran S., 2022, *A&A*, 658, A167

Gobrecht D., Hashemi S. R., Plane J. M. C., Bromley S. T., Nyman G., Decin L., 2023, *A&A*, 680, A18

Godin P. J., Ramirez R. M., Campbell C. L., Wizenberg T., Nguyen T. G., Strong K., Moores J. E., 2020, *J. Geophys. Res.: Planets*, 125, e2019JE006357

Gohle C., Stein B., Schliesser A., Udem T., Hansch T. W., 2007, *Phys. Rev. Lett.*, 99, 263902

Goldenstein C. S., Jeffries J. B., Hanson R. K., 2013, *J. Quant. Spectrosc. Radiat. Transfer*, 130, 100

Goldflam R., Green S., Kouri D. J., 1977, *J. Chem. Phys.*, 67, 4149

Gomez F. M., Hargreaves R. J., Gordon I. E., 2024, *MNRAS*, 528, 3823

Gordon R. G., 1966, *J. Chem. Phys.*, 44, 3083

Gordon S., McBride B. J., 1994, NASA Lewis Research Center Cleveland, NASA-RP-1311, 95N20180

Gordon I. E. et al., 2022, *J. Quant. Spectrosc. Radiat. Transfer*, 277, 107949

Gorman M. N., Yurchenko S. N., Tennyson J., 2019, *MNRAS*, 490, 1652

Goumans T. P. M., Bromley S. T., 2012, *MNRAS*, 420, 3344

Grant D. et al., 2023, *ApJ*, 956, L32

Grimm S. L., Heng K., 2015, *ApJ*, 808, 182

Grimm S. L. et al., 2021, *ApJS*, 253, 30

Grosch H., Fateev A., Clausen S., 2015, *J. Quant. Spectrosc. Radiat. Transfer*, 154, 28

Gruszka M., Borysow A., 1997, *Icarus*, 129, 172

Guay P., Genest J., Fleisher A. J., 2018, *Opt. Lett.*, 43, 1407

Guest E. R., Tennyson J., Yurchenko S. N., 2024, *J. Mol. Spectrosc.*, 401, 111901

Guillot T., Fletcher L. N., Helled R., Ikoma M., Line M. R., Parmentier V., 2022, preprint ([arXiv:2205.04100](https://arxiv.org/abs/2205.04100))

Guilluy G., Sozzetti A., Giacobbe P., Bonomo A. S., Micela G., 2022, *Exp. Astron.*, 53, 655

Guo R., Teng J., Dong H., Zhang T., Li D., Wang D., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 264, 107555

Gustafsson M., Frommhold L., 2001, *ApJ*, 546, 1168

Gustafsson M., Frommhold L., 2003, *A&A*, 400, 1161

Hakalla R. et al., 2016, *RSC Adv.*, 6, 31588

Hansen B. M. S., Sterl Phinney E., 1998, *MNRAS*, 294, 557

Hapke B., 1993, Theory of Reflectance and Emittance Spectroscopy, Topics in Remote Sensing. Cambridge Univ. Press, Cambridge, UK

Haque-Misra J., Kopparapu R., Fauchez T. J., Frank A., Wright J. T., Lingam M., 2022, *Planet. Sci. J.*, 3, 60

Hardy P., Richard C., Boudon V., Khan M. V., Manceron L., Dridi N., 2023, *J. Quant. Spectrosc. Radiat. Transfer*, 311, 108779

Hargreaves R. J., Hinkle K. H., Bauschlicher C. W. J., Wende S., Seifahrt A., Bernath P. F., 2010, *AJ*, 140, 919

Hargreaves R. J., Li G., Bernath P. F., 2012, *J. Quant. Spectrosc. Radiat. Transfer*, 113, 670

Hargreaves R. J., Buzan E., Dulick M., Bernath P. F., 2015, *Mol. Astrophys.*, 1, 20

Hargreaves R. J. et al., 2019, *J. Quant. Spectrosc. Radiat. Transfer*, 232, 35

Hargreaves R. J., Gordon I. E., Rey M., Nikitin A. V., Tyuterev V. G., Kochanov R. V., Rothman L. S., 2020, *ApJS*, 247, 55

Harper O. J. et al., 2019, *J. Chem. Phys.*, 150, 141103

Harper O. J., Gans B., Loison J.-C., Garcia G. A., Hrodmarsson H. R., Boyé-Péronne S., 2021, *J. Phys. Chem. A*, 125, 2764

Harrison J. J., 2018, *Atmos. Meas. Tech.*, 11, 5827

Hartmann J. M., Boulet C., Robert D., 2008, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications, 1st edn. Elsevier Science, Amsterdam

Hartmann J.-M., Boulet C., Tran H., Nguyen M. T., 2010, *J. Chem. Phys.*, 133, 144313

Hartmann J.-M., Boulet C., Toon G. C., 2017, *J. Geophys. Res.-Atmosphere*, 122, 2419

Hartmann J.-M., Boulet C., Tran D. D., Tran H., Baranov Y., 2018a, *J. Phys. Chem.*, 148, 054304

Hartmann J.-M. et al., 2018b, *J. Quant. Spectrosc. Radiat. Transfer*, 213, 178

He C. et al., 2019, *ACS Earth Space Chem.*, 3, 39

He C., Hörst S. M., Radke M., Yant M., 2022a, *Planet. Sci. J.*, 3, 25

He C., Serigano J., Hörst S. M., Radke M., Sebree J. A., 2022b, *ACS Earth Space Chem.*, 6, 2295

He J., Diamant S. J. M., Wang S., Yu H., Rocha W. R. M., Rachid M., Linnartz H., 2022c, *ApJ*, 925, 179

He C. et al., 2024, *Nature Astronomy*, 8, 182

Heays A. N., Bosman A. D., van Dishoeck E. F., 2017, *A&A*, 602, A105

Heays A. N. et al., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 204, 12

Heays A. N., Stark G., Lyons J. R., de Oliveira N., Lewis B. R., Gibson S. T., 2023, *Mol. Phys.*, 121, e2153092

Hedges C., Madhusudhan N., 2016, *MNRAS*, 458, 1427

Heiter U. et al., 2002, *A&A*, 392, 619

Heller S. R., McNaught A., Pletnev I., Stein S., Tchekhovskoi D., 2015, *J. Cheminform.*, 7, 23

Helling C., 2021, in *ExoFrontiers*, IOP Publishing, Bristol, p. 20

Helling C. et al., 2008, *MNRAS*, 391, 1854

Helling C. et al., 2023, *A&A*, 671, A122

Henning T., Begemann B., Mutschke H., Dorschner J., 1995, *A&AS*, 112, 143

Henning T., Il'in V. B., Krivova N. A., Michel B., Voshchinnikov N. V., 1999, *A&AS*, 136, 405

Herbort O., Woitke P., Helling C., Zerkle A., 2020, *A&A*, 636, A71

Hewett D., Bernath P. F., Wong A., Billinghamurst B. E., Zhao J., Lombardo N. A., Nixon C. A., Jennings D. E., 2020, *Icarus*, 344, 113460

Hill C., 2023, Technical Report, International Atomic and Molecular Code Centres Network: Virtual Atomic and Molecular Data Centres Consortium Annual Meeting: Summary Report of the 8th Biennial Technical Meeting of the IAEA Code Centres Network, INDC(NDS)-0897. International Atomic Energy Agency, Vienna. Available at: <https://www-nds.iaea.org/publications/indc/indc-nds-0897/>

Hill C., Dipti, Heinola K., Haničinec M., 2024, *Atoms*, 12, 20

Hindmarsh W. R., Petford A. D., Smith G., 1967, *Proc. R. Soc. Lond. Ser. A Math. Eng. Sci.*, 297, 296

Hinkle K. H., Wallace L., Ram R. S., Bernath P. F., Sneden C., Lucatello S., 2013, *ApJS*, 207, 26

Hjälteén A., Germann M., Krzempek K., Hudzikowski A., Głuszek A., Tomaszewska D., Soboń G., Foltynowicz A., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 271, 107734

Hjältén A., Foltynowicz A., Sadiek I., 2023, *J. Quant. Spectrosc. Radiat. Transfer*, 306, 108646

Hobbs R., Rimmer P. B., Shorttle O., Madhusudhan N., 2021, *MNRAS*, 506, 3186

Hodges J. N., Bernath P. F., 2017, *ApJ*, 840, 81

Hodges J. N., Bittner D. M., Bernath P. F., 2018, *ApJ*, 855, 21

Hoeijmakers H. J. et al., 2020, *A&A*, 641, A123

Holmberg M., Madhusudhan N., 2024, *A&A*, 683, L2

Hörst S. M., Vuitton V., Yelle R. V., 2008, *J. Geophys. Res.: Planets*, 113, E10006

Hörst S. M. et al., 2018a, *Nat. Astron.*, 2, 303

Hörst S. M., He C., Ugelow M. S., Jellinek A. M., Pierrehumbert R. T., Tolbert M. A., 2018b, *ApJ*, 858, 119

Hou S., Bernath P. F., 2017, *J. Quant. Spectrosc. Radiat. Transfer*, 203, 511

Hou S., Bernath P. F., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 210, 44

Hrabina J., Hosek M., Rerucha S., Cizek M., Pilat Z., Zucco M., Lazar J., Cip O., 2022, *Opt. Lett.*, 47, 5704

Hrodmarsson H. R., Van Dishoeck E. F., 2023, *A&A*, 675, A25

Hrodmarsson H. R., Garcia G. A., Nahon L., Loison J.-C., Gans B., 2019, *Phys. Chem. Chem. Phys.*, 21, 25907

Hu R., 2019, *ApJ*, 887, 166

Hu R., 2021, *ApJ*, 921, 27

Huang X., Schwenke D. W., Lee T. J., 2015, *J. Mol. Spectrosc.*, 311, 19

Huang X., Schwenke D. W., Lee T. J., 2016, *J. Mol. Spectrosc.*, 330, 101

Huang X., Schwenke D. W., Lee T. J., 2021, *Acc. Chem. Res.*, 54, 1311

Huang X., Schwenke D. W., Freedman R. S., Lee T. J., 2022a, *J. Phys. Chem. A*, 126, 5940

Huang X., Sung K., Toon G. C., Schwenke D. W., Lee T. J., 2022b, *J. Quant. Spectrosc. Radiat. Transfer*, 280, 108076

Huang X., Schwenke D. W., Lee T. J., 2023a, *Mol. Phys.*, 122, e2232892

Huang X., Freedman R. S., Tashkun S., Schwenke D. W., Lee T. J., 2023b, *J. Mol. Spectrosc.*, 392, 111748

Huebner W. F., Keady J. J., Lyon S. P., 1992, *Astrophys. Space Sci.*, 195, 1

Humbelcek J., 1982, *J. Quant. Spectrosc. Radiat. Transfer*, 27, 437

Husser T.-O., Wende-von Berg S., Dreizler S., Homeier D., Reiners A., Barman T., Hauschildt P. H., 2013, *A&A*, 553, A6

Ibrahim M. T. I., Alatoom D., Furtenbacher T., Csaszar A. G., Yurchenko S. N., Azzam A. A. A., Tennyson J., 2024, *J. Comput. Chem.*, 45, 969

Imanaka H. et al., 2004, *Icarus*, 168, 344

Iman N., Al-Zafar Khan M., Bennai M., 2024, *Mater. Today Commun.*, 38, 107760

Irwin A. W., 1981, *ApJS*, 45, 621

Irwin P. G. J. et al., 2008, *J. Quant. Spectrosc. Radiat. Transfer*, 109, 1136

Irwin P. G., Bowles N., Braude A. S., Garland R., Calcutt S., Coles P. A., Yurchenko S. N., Tennyson J., 2019, *Icarus*, 321, 572

Ito Y., Changeat Q., Edwards B., Al-Refaei A., Tinetti G., Ikoma M., 2022, *Exp. Astron.*, 53, 357

Iwakuni K., 2022, *J. Mol. Spectrosc.*, 384, 111571

Iyer A. R., Swain M. R., Zellem R. T., Line M. R., Roudier G., Rocha G., Livingston J. H., 2016, *ApJ*, 823, 109

Jablonski A., 1937, *Acta Phys. Polon.*, 6, 371

Jablonski A., 1945, *Phys. Rev.*, 68, 78

Jacquinot-Husson N. et al., 2016, *J. Mol. Spectrosc.*, 327, 31

Jaeger C., Molster F. J., Dorschner J., Henning T., Mutschke H., Waters L. B. F. M., 1998, *A&A*, 339, 904

Jäger C., Dorschner J., Mutschke H., Posch T., Henning T., 2003, *A&A*, 408, 193

Janson M. et al., 2023, *A&A*, 671, A114

Janssen L. J., Woitke P., Herbort O., Min M., Chubb K. L., Helling C., Carone L., 2023, *Astron. Nachr.*, 344, e20230075

Jaziri A. Y. et al., 2024, *A&A*, 684, A25

Jenkin M. E., Valoroso R., Aumont B., Rickard A. R., 2019, *Atmos. Chem. Phys.*, 19, 7691

Jeong K. S., Chang C., Sedlmayr E., Sülzle D., 2000, *J. Phys. B: At. Mol. Opt. Phys.*, 33, 3417

Jochims H. W., Baumgaertel H., Leach S., 1996, *A&A*, 314, 1003

Jochims H., Rühl E., Baumgaertel H., Tobita S., Leach S., 1997, *Int. J. Mass Spectrom.*, 167-168, 35

Jochims H. W., Baumgaertel H., Leach S., 1999, *ApJ*, 512, 500

John T. L., 1988, *A&A*, 193, 189

Johnson J. W., Oelkers E. H., Helgeson H. C., 1992, *Comput. Geosci.*, 18, 899

Jäger C., Il'v in V. B., Henning T., Mutschke H., Fabian D., Semenov D. A., Voshchinnikov N. V., 2003, *J. Quant. Spectrosc. Radiat. Transfer*, 79-80, 765

Kálmán S., Szabó G. M., Borsato L., Bódi A., Pál A., Szabó R., 2023, *MNRAS*, 522, 488

Karhu J. et al., 2019, *Opt. Lett.*, 44, 1142

Karkoschka E., 1994, *Icarus*, 111, 174

Karlovels E. V., Gordon I. E., Konnov D., Muraviev A. V., Vodopyanov K. L., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 256, 107269

Karlovels E. V., Kassi S., Tashkun S. A., Campargue A., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 262, 107508

Karlovels E. V., Tashkun S. A., Kassi S., Campargue A., 2022, *J. Quant. Spectrosc. Radiat. Transfer*, 278, 108003

Karman T., Miliordos E., Hunt K. L. C., Groenenboom G. C., van der Avoird A., 2015, *J. Phys. Chem.*, 142, 084306

Karman T., Koenis M. A. J., Banerjee A., Parker D. H., Gordon I. E., van der Avoird A., van der Zande W. J., Groenenboom G. C., 2018, *Nat. Chem.*, 10, 549

Karman T. et al., 2019, *Icarus*, 328, 160

Kassi S., Stoltmann T., Casado M., Daëron M., Campargue A., 2018, *J. Chem. Phys.*, 148, 054201

Kassi S., Guessoum S., Acosta Abanto J. C., Tran H., Campargue A., Mondelain D., 2021, *J. Geophys. Res.-Atmosphere*, 126, e2021JD034860

Kawashima Y., Min M., 2021, *A&A*, 656, A90

Kefala K., Boudon V., Yurchenko S. N., Tennyson J., 2024, *J. Quant. Spectrosc. Radiat. Transfer*, 316, 108897

Keller-Rudek H., Moortgat G. K., Sander R., Sörensen R., 2013, *Earth Syst. Sci. Data*, 5, 365

Kéromnès A. et al., 2013, *Combust. Flame*, 160, 995

Khare B., Sagan C., Arakawa E., Suits F., Callcott T., Williams M., 1984, *Icarus*, 60, 127

Kilpatrick B. M. et al., 2018, *AJ*, 156, 103

Kitzmann D., Heng K., 2017, *MNRAS*, 475, 94

Kitzmann D., Heng K., Oreshenko M., Grimm S. L., Apai D., Bowler B. P., Burgasser A. J., Marley M. S., 2020, *ApJ*, 890, 174

Kitzmann D., Stock J. W., Patzer A. B. C., 2023, *MNRAS*, 527, 7263

Knabe K., Williams P. A., Giorgetta F. R., Radunsky M. B., Armacost C. M., Crivello S., Newbury N. R., 2013, *Opt. Express*, 21, 1020

Kochanov R. V., Gordon I. E., Rothman L. S., Wcislo P., Hill C., Wilzewski J. S., 2016, *J. Quant. Spectrosc. Radiat. Transfer*, 177, 15

Kochanov R. V. et al., 2019, *J. Quant. Spectrosc. Radiat. Transfer*, 230, 172

Kocheril P. A., Markus C. R., Esposito A. M., Schrader A. W., Dieter T. S., McCall B. J., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 215, 9

Köhler T., Mäder H., Nicolaisen H.-W., 1995, *Mol. Phys.*, 86, 287

Köhler T. M., Gail H.-P., Sedlmayr E., 1997, *A&A*, 320, 553

Köhn C., Helling C., Bödker Enghoff M., Haynes K., Sindel J. P., Krog D., Gobrecht D., 2021, *A&A*, 654, A120

Koike C., Kaito C., Yamamoto T., Shibai H., Kimura S., Suto H., 1995, *Icarus*, 114, 203

Kokaly R. F. et al., 2017, USGS Spectral Library Version 7, United States Geological Survey (USGS), Reston, VAA, 61

Koroleva A. O., Kassi S., Mondelain D., Campargue A., 2023a, *J. Quant. Spectrosc. Radiat. Transfer*, 296, 108432

Koroleva A. O., Mikhailenko S. N., Kassi S., Campargue A., 2023b, *J. Quant. Spectrosc. Radiat. Transfer*, 298, 108489

Kowzan G. et al., 2016, *Opt. Lett.*, 41, 974

Kowzan G., Stec K., Zaborowski M., Wójciewicz S., Cygan A., Lisak D., Małowski P., Trawiński R. S., 2017, *J. Quant. Spectrosc. Radiat. Transfer*, 191, 46

Kowzan G., Charczun D., Cygan A., Trawiński R. S., Lisak D., Małowski P., 2019, *Sci. Rep.*, 9, 8206

Kramida A., Ralchenko Y., Reader J., 2021, *NIST Atomic Spectra Database—Version 5.9*. NIST, Gaithersburg, MD Available: <http://physics.nist.gov/aia>

Krenn A. F. et al., 2023, *A&A*, 672, A24

Krzempek K., Tomaszewska D., Gluszek A., Martynkien T., Mergo P., Sotor J., Foltynowicz A., Sobon G., 2019, *Opt. Express*, 27, 37435

Kuntz M., 1997, *J. Quant. Spectrosc. Radiat. Transfer*, 57, 819

Kurucz R. L., 1995, *Highlights Astron.*, 10, 579

Kurucz R. L., 2011, *Can. J. Phys.*, 89, 417

Kurucz R. L., 2017, *Can. J. Phys.*, 95, 825

Lafferty W. J., Solodov A. M., Weber A., Olson W. B., Hartmann J.-M., 1996, *Appl. Opt.*, 35, 5911

Lam J., Amans D., Dujardin C., Ledoux G., Allouche A.-R., 2015, *J. Phys. Chem. A*, 119, 8944

Lamperti M. et al., 2020, *Commun. Phys.*, 3, 175

Langford S. R. et al., 1998, *J. Chem. Phys.*, 108, 6667

Langleben J., Yurchenko S. N., Tennyson J., 2019, *MNRAS*, 488, 2332

Lavrentieva N. N., Dudaryonok A. S., 2020, *Icarus*, 336, 113452

Lavvas P., Koskinen T., 2017, *AJ*, 847, 32

Leconte J., 2021, *A&A*, 645, A20

Lecoq-Molinos H., Gobrecht D., Sindel J. P., Helling C., Decin L., 2024, *A&A*, 690, A34

Lee E., Helling C., Giles H., Bromley S. T., 2015, *A&A*, 575, A11

Lee E. K. H., Parmentier V., Hammond M., Grimm S. L., Kitzmann D., Tan X., Tsai S.-M., Pierrehumbert R. T., 2021, *MNRAS*, 506, 2695

Léfeuvre-Brion H., Field R. W., 2004, Perturbations in the Spectra of Diatomic Molecules: Revised and Enlarged Edition. Elsevier B.V, Amsterdam

Lemaire J. L., Heays A. N., Eidelberg M., Gavilan L., Stark G., Federman S. R., Lyons J. R., de Oliveira N., 2018, *A&A*, 614, A114

Lew B. W. P. et al., 2024, *ApJ*, 167, 236

Lewis N. K. et al., 2020, *ApJ*, 902, L19

Li G., Gordon I. E., Hajigeorgiou P. G., Coxon J. A., Rothman L. S., 2013, *J. Quant. Spectrosc. Radiat. Transfer*, 130, 284

Li G., Gordon I. E., Rothman L. S., Tan Y., Hu S.-M., Kassi S., Campargue A., Medvedev E. S., 2015, *ApJS*, 216, 15

Li H.-Y., Tennyson J., Yurchenko S. N., 2019, *MNRAS*, 486, 2351

Li X., Qin Z., Liu L., 2024, *Phys. Chem. Chem. Phys.*, 26, 12838

Lietzow M., Wolf S., 2022, *A&A*, 663, A55

Lindholm E., 1945, Arkiv Mat. Astron. Fysic, 32, 17

Linsky J. L., 1969, *ApJ*, 156, 989

Liu G. L., Wang J., Tan Y., Kang P., Bi Z., Liu A. W., Hu S. M., 2019, *J. Quant. Spectrosc. Radiat. Transfer*, 229, 17

Livingston Large T. A., Kliwer C. J., 2024, *J. Chem. Phys.*, 160, 201102

Lodge M. G., Wakeford H. R., Leinhardt Z. M., 2023, *MNRAS*, 527, 11113

Lodi L., Yurchenko S. N., Tennyson J., 2015, *Mol. Phys.*, 113, 1559

Loeb A., 2010, How did the First Stars and Galaxies Form?. Princeton Univ. Press, Princeton

Lombardo N. A. et al., 2019, *ApJ*, 881, L33

López-Puertas M. et al., 2013, *ApJ*, 770, 132

López-Puertas M., nés Rodríguez P. M., Pallé E., Höpfner M., Sánchez-López A., García-Comas M., Funke B., 2018, *AJ*, 156, 169

Lu Z., Chang Y. C., Gao H., Benitez Y., Song Y., Ng C. Y., Jackson W. M., 2014, *J. Chem. Phys.*, 140, 231101

Luo P.-L., 2020, *Opt. Lett.*, 45, 6791

Lynas-Gray A. E., Polyansky O. L., Tennyson J., Yurchenko S. N., Zobov N. F., 2024, *MNRAS*, in press

Lynch R., Gamache R., Neshyba S., 1996, *J. Chem. Phys.*, 105, 5711

Ma Q., Tipping R. H., Boulet C., 2007, *J. Quant. Spectrosc. Radiat. Transfer*, 103, 588

Ma Q., Boulet C., Tipping R. H., 2013, *J. Chem. Phys.*, 139, 034305

Ma S., Ito Y., Al-Refaie A. F., Changeat Q., Edwards B., Tinetti G., 2023, *AJ*, 957, 104

MacDonald R. J., 2023, *J. Open Source Softw.*, 8, 4873

MacDonald R. J., Batalha N. E., 2023, *Res. Notes Am. Astron. Soc.*, 7, 54

Mackowski D. W., Mishchenko M. I., 1996, *J. Opt. Soc. Am. A*, 13, 2266

Madhusudhan N., Sarkar S., Constantinou S., Holmberg M., Piette A. A. A., Moses J. I., 2023, *ApJL*, 956, L13

Mahapatra G., Helling C., Miguel Y., 2017, *MNRAS*, 472, 447

Malarich N. A., Yun D., Sung K., Egbert S., Coburn S. C., Drouin B. J., Rieker G. B., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 272, 107812

Malaterre C. et al., 2023, *Astrobiology*, 23, 1213

Malik M. et al., 2017, *ApJ*, 153, 56

Mallochi G., Joblin C., Mulas G., 2007, *Chem. Phys.*, 332, 353

Mant B. P., Yachmenev A., Tennyson J., Yurchenko S. N., 2018, *MNRAS*, 478, 3220

Mant B. P., Chubb K. L., Yachmenev A., Tennyson J., Yurchenko S. N., 2019, *Mol. Phys.*, 118, e1581951

Margenau H., 1935, *Phys. Rev.*, 48, 755

Margenau H., 1936, *Phys. Rev.*, 49, 596

Markus C. R., Kocheril P. A., McCall B. J., 2019, *J. Mol. Spectrosc.*, 355, 8

Martin-Drumel M.-A. et al., 2023, *J. Mol. Spectrosc.*, 391, 111734

Maslowski P. et al., 2016, *Phys. Rev. A*, 93, 021802(R)

Masseron T. et al., 2014, *A&A*, 571, A47

Maté B., Lugez C., Fraser G. T., Lafferty W. J., 1999, *J. Geophys. Res.-Atmosphere*, 104, 30585

Mattiola A. L. et al., 2020, *ApJS*, 251, 22

Mayor M., Queloz D., 1995, *Nature*, 378, 355

McElroy M. B., Donahue T. M., 1972, *Science*, 177, 986

McKellar A. R. W., 1988, *ApJ*, 326, L75

McKellar A. R. W., 1989, *Icarus*, 80, 361

McKemmish L. K., Yurchenko S. N., Tennyson J., 2016, *MNRAS*, 463, 771

McKemmish L. K. et al., 2017, *ApJS*, 228, 15

McKemmish L. K., Masseron T., Hoeijmakers J., Pérez-Mesa V. V., Grimm S. L., Yurchenko S. N., Tennyson J., 2019, *MNRAS*, 488, 2836

McKemmish L. K., Syme A. M., Boroszky J., Yurchenko S. N., Tennyson J., Furtenbacher T., Császár A. G., 2020, *MNRAS*, 497, 1081

McKemmish L. K., Bowesman C. A., Kefala K., Perri A. N., Syme A. M., Yurchenko S. N., Tennyson J., 2024, *RASTI*, 3, 565

Meerdink S. K., Hook S. J., Roberts D. A., Abbott E. A., 2019, *Remote Sensing Environ.*, 230, 111196

Melen F., Grevesse N., Sauval A. J., Farmer C. B., Norton R. H., Bredohl H., Dubois I., 1989, *J. Mol. Spectrosc.*, 134, 305

Melen F., Sauval A. J., Grevesse N., Farmer C. B., Servais C., Delbouille L., Roland G., 1995, *J. Mol. Spectrosc.*, 174, 490

Melin S. T., Sanders S. T., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 214, 1

Melin S. T., Sanders S. T., Nasir E. F., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 253, 107079

Mellor T., Owens A., Yurchenko S. N., Tennyson J., 2022, *MNRAS*, 520, 1997

Melosso M., Diouf M. L., Bizzocchi L., Harding M. E., Cozijn F. M. J., Puzzarini C., Ubachs W., 2021, *J. Phys. Chem. A*, 125, 7884

Menoux V., Doucen R. L., Boulet C., Roblin A., Bouchardy A. M., 1993, *Appl. Opt.*, 32, 263

Mikal-Evans T. et al., 2022, *Nat. Astron.*, 6, 471

Miladi M., Le Falher J.-P., Roncin J.-Y., Damany H., 1975, *J. Mol. Spectrosc.*, 55, 81

Miladi M., Roncin J.-Y., Damany H., 1978, *J. Mol. Spectrosc.*, 69, 260

Millar T. J., Walsh C., Van de Sande M., Markwick A. J., 2024, *A&A*, 682, A109

Min M., 2017, *A&A*, 607, A9

Min M., Hovenier J. W., de Koter A., 2005, *A&A*, 432, 909

Min M., Ormel C. W., Chubb K., Helling C., Kawashima Y., 2020, *A&A*, 642, A28

Mishchenko M. I., Dlugach J. M., Liu L., 2016, *J. Quant. Spectrosc. Radiat. Transfer*, 178, 284

Mitev G. B., Taylor S., Tennyson J., Yurchenko S. N., Buchachenko A. A., Stolyarov A. V., 2022, *MNRAS*, 511, 2349

Mitev G. B., Yurchenko S. N., Tennyson J., 2024, *J. Chem. Phys.*, 160, 144110

Mizus I. I., Alijah A., Zobov N. F., Kyuberis A. A., Yurchenko S. N., Tennyson J., Polyansky O. L., 2017, *MNRAS*, 468, 1717

Mizushima M., 1951, *Phys. Rev.*, 83, 94

Mlawer E. J., Payne V. H., Moncet J. L., Delamere J. S., Alvarado M. J., Tobin D. C., 2012, *Phil. Trans. Royal Soc. London A*, 370, 2520

Mlawer E. J. et al., 2019, *J. Geophys. Res.-Atmosphere*, 124, 8134

Mlawer E. J., Cady-Pereira K. E., Mascio J., Gordon I. E., 2023, *J. Quant. Spectrosc. Radiat. Transfer*, 306, 108645

Mollière P., Snellen I. A. G., 2019, *A&A*, 622, A139

Mollière P., van Boekel R., Bouwman J., Henning T., Lagage P.-O., Min M., 2017, *A&A*, 600, A10

Mollière P., Wardenier J. P., van Boekel R., Henning T., Molaverdikhani K., Snellen I. A. G., 2019, *A&A*, 627, A67

Mondelain D., Sala T., Kassi S., Romanini D., Marangoni M., Campargue A., 2015, *J. Quant. Spectrosc. Radiat. Transfer*, 154, 35

Mondelain D., Kassi S., Campargue A., 2019, *J. Geophys. Res.-Atmosphere*, 124, 414

Mondelain D., Campargue A., Fleurbaey H., Kassi S., Vasilchenko S., 2022, *J. Quant. Spectrosc. Radiat. Transfer*, 288, 108267

Mondelain D., Campargue A., Fleurbaey H., Kassi S., Vasilchenko S., 2023, *J. Quant. Spectrosc. Radiat. Transfer*, 298, 108485

Moos H. W., McCandliss S. R., Kruk J. W., 2004, in Hasinger G., Turner M. J. L., eds, *Proc. SPIE Conf. Ser. Vol. 5488, UV and Gamma-Ray Space Telescope Systems*. SPIE, Bellingham, p. 1

Moran S. E. et al., 2022, *J. Geophys. Res.: Planets*, 127, e2021JE006984

Morley C. V., Fortney J. J., Marley M. S., Visscher C., Saumon D., Leggett S. K., 2012, *ApJ*, 756, 172

Moses J. I., Bézard B., Lellouch E., Gladstone G., Feuchtgruber H., Allen M., 2000, *Icarus*, 143, 244

Moses J. I., Fouchet T., Bézard B., Gladstone G. R., Lellouch E., Feuchtgruber H., 2005, *J. Geophys. Res.: Planets*, 110, E08001

Moses J. I., Visscher C., Keane T. C., Sperier A., 2010, *Faraday Discuss.*, 147, 103

Moses J. I. et al., 2011, *ApJ*, 737, 15

Moses J. I., Fletcher L. N., Greathouse T. K., Orton G. S., Hue V., 2018, *Icarus*, 307, 124

Mould J., Liebert J., 1978, *ApJ*, 226, L29

Mukherjee S., Batalha N. E., Fortney J. J., Marley M. S., 2023, *ApJ*, 942, 71

Muller C., Michel V., Scacchi G., Côme G. M., 1995, *J. Chem. Phys.*, 92, 1154

García Muñoz A., Isaak K. G., 2015, *Proc. Nat. Acad. Sci.*, 112, 13461

García Muñoz A., Schneider P. C., 2019, *ApJ*, 884, L43

Muñoz O., Moreno F., Guirado D., Dabrowska D. D., Volten H., Hovenier J. W., 2012, *J. Quant. Spectrosc. Radiat. Transfer*, 113, 565

Muraviev A. V., Konnov D., Vodopyanov K. L., 2020, *Sci. Rep.*, 10, 18700

Nahon L., de Oliveira N., Garcia G. A., Gil J.-F., Pilette B., Marcouille O., Lagarde B., Polack F., 2012, *J. Synchrotron Radiat.*, 19, 508

Nassar R., Bernath P., 2003, *J. Quant. Spectrosc. Radiat. Transfer*, 82, 279

Ndengué S., Quintas-Sánchez E., Dawes R., Blackstone C. C., Osborn D. L., 2023, *J. Phys. Chem. A*, 127, 6051

Nikolaou N. et al., 2023, *RASTI*, 2, 695

Niraula P., de Wit J., Gordon I. E., Hargreaves R. J., Sousa-Silva C., Kochanov R. V., 2022, *Nat. Astron.*, 6, 1287

Niraula P., de Wit J., Gordon I. E., Hargreaves R. J., Sousa-Silva C., 2023, *ApJ*, 950, L17

Nishiyama A., Kowzan G., Charczun D., Ciuryło R., Coluccelli N., Masłowski P., 2024, *Measurement*, 227, 114273

Nixon C. A. et al., 2013, *ApJ*, 776, L14

Nuth-III J. A., Ferguson F. T., 2006, *ApJ*, 649, 1178

Odintsova T. A., Tretyakov M. Y., Simonova A. A., Ptashnik I. V., Pirali O., Campargue A., 2020, *J. Mol. Struct.*, 1210, 128046

Odintsova T. A. et al., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 258, 107400

Okubo S., Nakayama H., Iwakuni K., Inaba H., Sasada H., 2011, *Opt. Express*, 19, 23878

de Oliveira N., Joyeux D., Roudjane M., Gil J.-F., Pilette B., Archer L., Ito K., Nahon L., 2016, *J. Synchrotron Radiat.*, 23, 887

Silva de Oliveira V., Silander I., Rutkowski L., Soboń G., Axner O., Lehmann K. K., Foltynowicz A., 2024, *Nat. Commun.*, 15, 161

Orlando J. J., Tyndall G. S., Nickerson K. E., Calvert J. G., 1991, *J. Geophys. Res.-Atmosphere*, 96, 20755

Ormel C. W., Min M., 2019, *A&A*, 622, A121

Owens A., Yurchenko S. N., 2019, *J. Chem. Phys.*, 150, 194308

Owens A., Yurchenko S. N., Yachmenev A., Thiel W., Tennyson J., 2017, *MNRAS*, 471, 5025

Owens A., Yachmenev A., Küpper J., Yurchenko S. N., Thiel W., 2018a, *Phys. Chem. Chem. Phys.*, 21, 3496

Owens A., Yachmenev A., Tennyson J., Thiel W., Yurchenko S. N., 2018b, *MNRAS*, 479, 3002

Owens A., Conway E. K., Tennyson J., Yurchenko S. N., 2020, *MNRAS*, 495, 1927

Owens A., Tennyson J., Yurchenko S. N., 2021, *MNRAS*, 502, 1128

Owens A., Dooley S., McLaughlin L., Tan B., Zhang G., Yurchenko S. N., Tennyson J., 2022a, *MNRAS*, 511, 5448

Owens A., Mitrushchenkov A., Yurchenko S. N., Tennyson J., 2022b, *MNRAS*, 516, 3995

Owens A., He T., Hanicic M., Hill C., Mohr S., Tennyson J., 2023, *Plasma Sources Sci. Technol.*, 32, 085015

Owens A., Wright S. O. M., Pavlenko Y., Mitrushchenkov A., Koput J., Yurchenko S. N., Tennyson J., 2024a, *MNRAS*, 527, 731

Owens A., Yurchenko S. N., Tennyson J., 2024b, *MNRAS*, 530, 4004

Palik E. D., 2012, *Handbook of Optical Constants of Solids: Vol 2*. Academic Press, Boston

Pannier E., Laux C. O., 2019, *J. Quant. Spectrosc. Radiat. Transfer*, 222-223, 12

Pastorek A., Clark V. H., Yurchenko S. N., Civiš S., 2022, *J. Quant. Spectrosc. Radiat. Transfer*, 291, 108332

Patrascu A. T., Tennyson J., Yurchenko S. N., 2015, *MNRAS*, 449, 3613

Patzer A. B. C., Chang C., Sedlmayr E., Stölzle D., 2005, *Eur. Phys. J. D*, 32, 329

Paulose G., Barton E. J., Yurchenko S. N., Tennyson J., 2015, *MNRAS*, 454, 1931

Pavlenko Y. V., Yurchenko S. N., McKemmish L. K., Tennyson J., 2020a, *A&A*, 42, A77

Pavlenko Y. V., Yurchenko S. N., Tennyson J., 2020b, *A&A*, 633, A52

Pavlyuchko A. I., Yurchenko S. N., Tennyson J., 2015, *MNRAS*, 452, 1702

Peach G., Yurchenko S., Chubb K., Baraffe I., Phillips M., Tremblin P., 2020, *Contrib. Astron. Obs. Skaln. Pleso*, 50, 193

Pearce O., Yurchenko S. N., Tennyson J., 2024, *MNRAS*, 527, 10726

Perri A. N., McKemmish L. K., 2024, *MNRAS*, 531, 3023

Perri A. N., Taher F., McKemmish L. K., 2023, *MNRAS*, 524, 4631

Petera L., Knížek A., Laitl V., Ferus M., 2023, *ApJ*, 945, 149

Pezzella M., Yurchenko S. N., Tennyson J., 2021, *Phys. Chem. Chem. Phys.*, 23, 16390

Pezzella M., Tennyson J., Yurchenko S. N., 2022, *MNRAS*, 514, 4413

Phewbs B. D., Johnson A. V., Mar B., Stone B. M., Colaprete A., Iraci L. T., 2011, *J. Geophys. Res.: Planets*, 116, E4

Pickett H. M., 1980, *J. Chem. Phys.*, 73, 6090

Pierrehumbert R., Gaidos E., 2011, *ApJS*, 734, L13

Pinhas A., Madhusudhan N., 2017, *MNRAS*, 471, 4355

Pinkowski N. H., Cassady S. J., Strand C. L., Hanson R. K., 2021, *Meas. Sci. Technol.*, 32, 035501

Pollack J. B., Hollenbach D., Beckwith S., Simonelli D. P., Roush T., Fong W., 1994, *ApJ*, 421, 615

Polyanskiy M. N., 2024, *Sci. Data*, 11, 94

Polyansky O. L., Zobov N. F., Viti S., Tennyson J., Bernath P. F., Wallace L., 1997, *Science*, 277, 346

Polyansky O. L., Kyuberis A. A., Lodi L., Tennyson J., Ovsyannikov R. I., Zobov N., 2017, *MNRAS*, 466, 1363

Polyansky O. L., Kyuberis A. A., Zobov N. F., Tennyson J., Yurchenko S. N., Lodi L., 2018, *MNRAS*, 480, 2597

Postberg F., Kempf S., Schmidt J., Brilliantov N., Beinsen A., Abel B., Buck U., Srama R., 2009, *Nature*, 459, 1098

Powell D., Zhang X., Gao P., Parmentier V., 2018, *ApJ*, 860, 18

Powell D. et al., 2024, *Nature*, 626, 979

Prajapati L., Jagoda P., Lodi L., Gorman M. N., Yurchenko S. N., Tennyson J., 2017, *MNRAS*, 472, 3648

Pranjal P., González-Vázquez J., Bello R. Y., Martín F., 2024, *J. Phys. Chem. A*, 128, 182

Prlj A., Ibele L. M., Marsili E., Curchod B. F. E., 2020, *J. Phys. Chem. Lett.*, 11, 5418

Prlj A., Marsili E., Hutton L., Hollas D., Shchepanovska D., Glowacki D. R., Slavíček P., Curchod B. F. E., 2022, *ACS Earth Space Chem.*, 6, 207

Ptashnik I. V., Shine K. P., Vigasin A. A., 2011a, *J. Quant. Spectrosc. Radiat. Transfer*, 112, 1286

Ptashnik I. V., McPheat R. A., Shine K. P., Smith K. M., Williams R. G., 2011b, *J. Geophys. Res.-Atmosphere*, 116, D16305

PyValem, 2024, PyValem: a Python package for parsing, validating, manipulating and interpreting the chemical formulas, quantum states and labels of atoms, ions and small molecules. Available at: <https://github.com/xnx/pyvalem>

Qu Q., Yurchenko S. N., Tennyson J., 2021, *MNRAS*, 504, 5768

Querry M. R., Wieliczka D. M., 1988, in DTIC ADA205188: Proc. 1987 Scientific Conference on Obscuration and Aerosol Research. p. 117

Rackham B. V. et al., 2023, *RASTI*, 2, 148

Ram R. S., Bernath P. F., 2010, *J. Mol. Spectrosc.*, 260, 115

Ram R. S., Brooke J. S. A., Western C. M., Bernath P. F., 2014, *J. Quant. Spectrosc. Radiat. Transfer*, 138, 107

Ramirez R. M., Kaltenegger L., 2017, *ApJ*, 837, L4

Ranjan S., Schwieterman E. W., Harman C., Fateev A., Sousa-Silva C., Seager S., Hu R., 2020, *ApJ*, 896, 148

Rautian S. G., Sobel'man I. I., 1966, *Usp. Fiz. Nauk*, 90, 209

Rautian S. G., Sobel'man I. I., 1967, *Sov. Phys. Usp.*, 9, 701

Reed Z. D., Drouin B. J., Long D. A., Hodges J. T., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 271, 107681

Rees M. J., 1976, *MNRAS*, 176, 483

Régalia L., Cousin E., Gamache R. R., Vispoel B., Robert S., Thomas X., 2019, *J. Quant. Spectrosc. Radiat. Transfer*, 231, 126

de Regt S., Kesseli A. Y., Snellen I. A. G., Merritt S. R., Chubb K. L., 2022, *A&A*, 661, A109

Rengel M., 2024, in Soderblom D. R., Nave G., eds, *Proc. IAU Symp. 371, Honoring Charlotte Moore Sitterly: Astronomical Spectroscopy in the 21st Century*. Cambridge Univ. Press, Cambridge, p. 87

Rengel M., Adamczewski J., 2023, *Front. Astron. Space Sci.*, 10, 1176740

Rey M., 2022, *J. Chem. Phys.*, 156, 224103

Rey M., Nikitin A. V., Tyuterev V. G., 2014a, *J. Chem. Phys.*, 141, 044316

Rey M., Nikitin A. V., Tyuterev V. G., 2014b, *ApJ*, 789, 2

Rey M., Nikitin A. V., Babikov Y. L., Tyuterev V. G., 2016a, *J. Mol. Spectrosc.*, 327, 138

Rey M., Delahaye T., Nikitin A. V., Tyuterev V. G., 2016b, *A&A*, 594, A47

Rey M., Nikitin A. V., Tyuterev V. G., 2017, *ApJ*, 847, 1

Rey M., Nikitin A. V., Bézard B., Rannou P., Coustenis A., Tyuterev V. G., 2018, *Icarus*, 303, 114

Rey M., Viglaska D., Egorov O., Nikitin A. V., 2023, *J. Chem. Phys.*, 159, 114103

Richard C. et al., 2012, *J. Quant. Spectrosc. Radiat. Transfer*, 113, 1276

Richard C., Boudon V., Rotger M., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 251, 107096

Richard C., Asselin P., Boudon V., 2022, *J. Mol. Spectrosc.*, 386, 111614

Richard C., Fathallah O. B., Hardy P., Kamel R., Merkulova M., Rotger M., Ulenikov O., Boudon V., 2024, *J. Quant. Spectrosc. Radiat. Transfer*, 327, 109127d

Rimmer P. B., Helling C., 2016, *ApJS*, 224, 9

Rimmer P. B. et al., 2019, *ApJ*, 888, 21

Rimmer P. B., Majumdar L., Priyadarshi A., Wright S., Yurchenko S. N., 2021, *ApJ*, 921, L28

Rinsland C. P., Smith M. A. H., Russell J. M., Park J. H., Farmer C. B., 1981, *Appl. Opt.*, 20, 4167

Rinsland C. P., Smith M. A. H., Seals Jr. R. K., Goldman A., Murcay F. J., Murcay D. G., Larsen J. C., Rarig P. L., 1982, *J. Geophys. Res.: Ocean*, 87, 3119

Ripamonti E., Abel T., 2004, *MNRAS*, 348, 1019

Rivlin T., Lodi L., Yurchenko S. N., Tennyson J., Le Roy R. J., 2015, *MNRAS*, 451, 5153

Robert D., Bonamy J., 1979, *J. Phys.*, 10, 923

Rocha W. R. M., Rachid M. G., Olsthoorn B., van Dishoeck E. F., McClure M. K., Linnartz H., 2022, *A&A*, 668, A63

Rohart F., Mäder H., Nicolaisen H.-W., 1994, *J. Chem. Phys.*, 101, 6475

Rohart F., Nguyen L., Buldyreva J., Colmont J.-M., Włodarczak G., 2007, *J. Mol. Spectrosc.*, 246, 213

Roman M. T., Kempton E. M.-R., Rauscher E., Harada C. K., Bean J. L., Stevenson K. B., 2021, *ApJ*, 908, 101

Rooney C. M., Batalha N. E., Gao P., Marley M. S., 2022, *ApJ*, 925, 33

Rose J. P., Berry R. S., 1992, *J. Phys. Chem.*, 96, 517

Rothman L. S., 2021, *Nat. Rev. Phys.*, 3, 302

Rothman L. S. et al., 2005, *J. Quant. Spectrosc. Radiat. Transfer*, 96, 139

Rothman L. S. et al., 2010, *J. Quant. Spectrosc. Radiat. Transfer*, 111, 2139

Roueff E., Abgrall H., Czachorowski P., Pachucki K., Puchalski M., Komasa J., 2019, *A&A*, 630, A58

Royer A., 1971, *Phys. Rev. A*, 3, 2044

Ruscic B., Pinzon R. E., von Laszewski G., Kodeboyina D., Burcat A., Leahy D., Montoy D., Wagner A. F., 2005, *J. Phys. Conf. Ser.*, 16, 561

Rutkowski L. et al., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 205, 213

Ryabchikova T., Piskunov N., Kurucz R. L., Stempels H. C., Heiter U., Pakhomov Y., Barklem P. S., 2015, *Phys. Scr.*, 90, 054005

Sadiek I., Hjältén A., Senna Vieira F., Lu C., Stuhr M., Foltynowicz A., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 255, 107263

Sadiek I., Hjältén A., Roberts F. C., Lehman J. H., Foltynowicz A., 2023, *Phys. Chem. Chem. Phys.*, 25, 8743

Saito M., Yang P., Ding J., Liu X., 2021, 78, 2089

Sakellaris C. N., Miliordos E., Mavridis A., 2011, *J. Phys. Chem.*, 134, 234308

Samuelson R. E., Nath N. R., Borysow A., 1997, *Planet Space Sci.*, 45, 959

Santagata R. et al., 2019, *Optica*, 6, 411

Saumon D., Jacobson S. B., 1998, *ApJ*, 511, L107

Schaefer L., Fegley Jr. B., 2005, *Icarus*, 179, 252

Schaefer L., Lodders K., Fegley B. Jr., 2012, *ApJ*, 755, 41

Schick H. L., 1960, *Chem. Rev.*, 60, 331

Schmitt B., Quirico E., Trotta F., Grundy W. M., 1998, in Schmitt B., de Bergh C., Festou M., eds, *Astrophysics and Space Science Library Vol. 227, Solar System Ices*. Springer, Dordrecht, p. 199

Schmitt B., Bolland P., Garenne A., Albert D., Bonal L., Poch O., 2018, in European Planetary Science Congress. EPSC, Berlin, Germany.

Schneider A. D., Carone L., Decin L., Jørgensen U. G., Mollière P., Baeyens R., Kiefer S., Helling C., 2022, *A&A*, 664, A56

Schroeder P. J., Pfotenhauer D. J., Yang J., Giorgetta F. R., Swann W. C., Coddington I., Newbury N. R., Rieker G. B., 2017, *J. Quant. Spectrosc. Radiat. Transfer*, 203, 194

Sciamma-O'Brien E., Roush T. L., Rannou P., Dubois D., Salama F., 2023, *Planet. Sci. J.*, 4, 121

Sciamma-O'Brien E., Drant T., Wogan N., 2024, *Nat. Rev. Chem.*, 8, 157

Seager S., Bains W., Hu R., 2013, *ApJ*, 775, 104

Seiff A. et al., 1985, *Adv. Space Res.*, 5, 3

Seinfeld J. H., Pandis S. N., 2016, *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*. Wiley, New York

Selim T., van der Avoird A., Groenenboom G. C., 2022, *J. Phys. Chem.*, 157, 064105

Serindag D. B., Nugroho S. K., Mollière P., de Mooij E. J. W., Gibson N. P., Snellen I. A. G., 2021, *A&A*, 645, A90

Shafer R., Gordon R. G., 1973, *J. Chem. Phys.*, 58, 5422

Sharp C. M., Burrows A., 2007, *ApJS*, 168, 140

Sharp C. M., Huebner W. F., 1990, *ApJS*, 72, 417

Sharpe S. W., Johnson T. J., Sams R. L., Chu P. M., Rhoderick G. C., Johnson P. A., 2004, *Appl. Spectrosc.*, 58, 1452

Shayesteh A., Henderson R. D. E., Le Roy R. J., Bernath P. F., 2007, *J. Phys. Chem. A*, 111, 12495

Shi X., Yin Q.-Z., Gao H., Chang Y.-C., Jackson W. M., Wiens R. C., Ng C.-Y., 2017, *ApJ*, 850, 48

Shine K. P., Campargue A., Mondelain D., McPheat R. A., Ptashnik I. V., Weidmann D., 2016, *J. Mol. Spectrosc.*, 327, 193

Shipman H. L., 1977, *ApJ*, 213, 138

Shulyak D., Lara L. M., Rengel M., Němec N.-E., 2020, *A&A*, 639, A48

Sindel J. P., Gobrecht D., Helling C., Decin L., 2022, *A&A*, 668, A35

Sindel J. P., Helling C., Gobrecht D., Chubb K. L., Decin L., 2023, *A&A*, 680, A65

Skinner J. W., Cho J. Y.-K., 2022, *MNRAS*, 511, 3584

Skinner J. W., Nättilä J., Cho J. Y.-K., 2023, *Phys. Rev. Lett.*, 131, 231201

Smith M., Benner D. C., Predoi-Cross A., Devi V. M., 2014, *J. Quant. Spectrosc. Radiat. Transfer*, 133, 217

Snels M., Stefani S., Boccaccini A., Biondi D., Piccioni G., 2021, *Atmos. Meas. Tech.*, 14, 7187

Song Y., Gao H., Chang Y. C., Hammouténe D., Ndome H., Hochlaf M., Jackson W. M., Ng C. Y., 2016, *ApJ*, 819, 23

Sousa-Silva C., Al-Refaei A. F., Tennyson J., Yurchenko S. N., 2015, *MNRAS*, 446, 2337

Sousa-Silva C., Petkowski J. J., Seager S., 2019, *Phys. Chem. Chem. Phys.*, 21, 18970

Spaun B., Changala P. B., Patterson D., Bjork B. J., Heckl O. H., Doyle J. M., Ye J., 2016, *Nature*, 533, 517

Spiering F. R., van der Zande W. J., 2012, *Phys. Chem. Chem. Phys.*, 14, 9923

Spiering F. R., Kiseleva M. B., Filippov N. N., van Kesteren L., van der Zande W. J., 2011, *Phys. Chem. Chem. Phys.*, 13, 9616

Sršeň Š., Slavíček P., 2021, *J. Chem. Theory Comput.*, 17, 6395

Sršeň Š., von Lilienfeld O., Slavíček P., 2024, *Phys. Chem. Chem. Phys.*, 26, 4306

Stam D. M., 2008, *A&A*, 482, 989

Stankiewicz K., Stolarczyk N., Jóźwiak H., Thibault F., Wcisło P., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 276, 107911

Stark G., Herde H., Lyons J. R., Heays A. N., de Oliveira N., Nave G., Lewis B. R., Gibson S. T., 2018, *J. Chem. Phys.*, 148, 244302

Stefani S., Piccioni G., Snels M., Grassi D., Adriani A., 2013, *J. Quant. Spectrosc. Radiat. Transfer*, 117, 21

Stefani S., Snels M., Piccioni G., Grassi D., Adriani A., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 204, 242

Stefani S., Piccioni G., Snels M., Biondi D., Boccaccini A., 2022a, *CO₂ Collisional Induced Absorption (CIA) database*. IAPS, Roma, Italy

Stefani S., Piccioni G., Snels M., Biondi D., Boccaccini A., 2022b, *Experimental Absorption Coefficients of Carbon Dioxide at High Pressure and High Temperature*. INAF - IAPS, Roma, Italy

Steffens B. L., Sung K., Malaska M. J., Lopes R. M. C., Toon G. C., Nixon C. A., 2023, *J. Quant. Spectrosc. Radiat. Transfer*, 310, 108730

Stock J. W., Kitzmann D., Patzer A. B. C., Sedlmayr E., 2018, *MNRAS*, 479, 865

Stock J. W., Kitzmann D., Patzer A. B. C., 2022, *MNRAS*, 517, 4070

Strand C. L., Ding Y., Johnson S. E., Hanson R. K., 2019, *J. Quant. Spectrosc. Radiat. Transfer*, 222, 122

Sumlin B. J., Heinson W. R., Chakrabarty R. K., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 205, 127

Sung K., Varanasi P., 2005, *J. Quant. Spectrosc. Radiat. Transfer*, 91, 319

Sung K., Toon G. C., Mantz A. W., Smith M. A. H., 2013, *Icarus*, 226, 1499

Sung K. et al., 2016a, AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 48, 424.11

Sung K., Toon G. C., Crawford T. J., 2016b, *Icarus*, 271, 438

Sung K., Toon G. C., Drouin B. J., Mantz A. W., Smith M. A. H., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 213, 119

Sung K., Devi V. M., Benner D. C., Drouin B. J., Crawford T. J., Mantz A. W., Smith M. A. H., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 256, 107264

Suto H. et al., 2006, *MNRAS*, 370, 1599

Swain M. R. et al., 2009, *ApJ*, 704, 1616

Syme A.-M., McKemmish L. K., 2021, *MNRAS*, 505, 4383

Szabó G. M. et al., 2022, *Exp. Astron.*, 53, 607

Szudy J., Baylis W. E., 1975, *J. Quant. Spectrosc. Radiat. Transfer*, 15, 641

Szudy J., Baylis W. E., 1996, *Phys. Rep.*, 266, 127

Tan Y., Kochanov R. V., Rothman L. S., Gordon I. E., 2019, *J. Geophys. Res.-Atmosphere*, 124, 11,580

Tan Y., Skinner F. M., Samuels S., Hargreaves R. J., Hashemi R., Gordon I. E., 2022, *ApJS*, 262, 40

Tancin R. J., Goldenstein C. S., 2021, *Opt. Express*, 29, 30140

Tancin R. J., Chang Z., Gu M., Radhakrishna V., Lucht R. P., Goldenstein C. S., 2020, *Opt. Lett.*, 45, 583

Taylor J., Parmentier V., 2023, *MNRAS*, 526, 2133

Taylor R. H., Borysow A., Frommhold L., 1988, *J. Mol. Spectrosc.*, 129, 45

Tazaki R., Tanaka H., 2018, *ApJ*, 860, 79

Tennyson J., 2024, *Mol. Phys.*, 122, e2276912

Tennyson J., Yurchenko S. N., 2017, *Mol. Astrophys.*, 8, 1

Tennyson J., Yurchenko S., 2018, *Atoms*, 6, 26

Tennyson J., Yurchenko S. N., 2021, *Astron. Geophys.*, 62, 6.16

Tennyson J. et al., 2014, *Pure Appl. Chem.*, 86, 1931

Tennyson J. et al., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 255, 107228

Tennyson J., Pezzella M., Zhang J., Yurchenko S. N., 2023, *RASTI*, 2, 231

Tennyson J., Furtenbacher T., Yurchenko S. N., Császár A. G., 2024a, *J. Quant. Spectrosc. Radiat. Transfer*, 316, 108902

Tennyson J. et al., 2024b, *J. Quant. Spectrosc. Radiat. Transfer*, 326, 109083

Thalman R., Volkamer R., 2013, *Phys. Chem. Chem. Phys.*, 15, 15371

Thibault F., Menoux V., Doucen R. L., Rosenmann L., Hartmann J.-M., Boulet C., 1997, *Appl. Opt.*, 36, 563

Thibault F., Ivanov S. V., Buzykin O. G., Gomez L., Dhyne M., Joubert P., Lepere M., 2011, *J. Quant. Spectrosc. Radiat. Transfer*, 112, 1429

Tilly J. et al., 2022, *Phys. Rep.*, 986, 1

Tinetti G. et al., 2007, *Nature*, 448, 169

Tinetti G. et al., 2018, *Exp. Astron.*, 46, 135

Tinetti G. et al., 2021, preprint ([arXiv:2104.04824](https://arxiv.org/abs/2104.04824))

Ting W.-J., Chang C.-H., Chen S.-E., Chen H.-C., Shy J.-T., Drouin B. J., Daly A. M., 2014, *J. Opt. Soc. Am. B*, 31, 1954

Tipping R., Poll J., 1985, in Rao K. N., ed., *Molecular Spectroscopy: Modern Research*. Academic Press, Massachusetts, United States, p. 421

Tóbiás R., Diouf M. L., Cozijn F. M. J., Ubachs W., Császár A. G., 2024, *Commun. Chem.*, 7, 34

Tobita S., Leach S., Jochims H. W., Rühl E., Illenberger E., Baumgärtel H., 1994, *Can. J. Phys.*, 72, 1060

Tonkov M. V. et al., 1996, *Appl. Opt.*, 35, 4863

Trafton L. M., 1964, *ApJ*, 140, 1340

Tran H., Boulet C., Hartmann J.-M., 2006, *J. Geophys. Res.-Atmosphere*, 111, D15210

Tran H., Boulet C., Stefani S., Snels M., Piccioni G., 2011, *J. Quant. Spectrosc. Radiat. Transfer*, 112, 925

Tran H., Ngo N. H., Hartmann J.-M., 2013, *J. Quant. Spectrosc. Radiat. Transfer*, 129, 199

Trees V. J. H., Stam D. M., 2022, *A&A*, 664, A172

Tremblin P., Amundsen D. S., Mourier P., Baraffe I., Chabrier G., Drummond B., Homeier D., Venot O., 2015, *ApJ*, 804, L17

Tremblin P., Amundsen D. S., Chabrier G., Baraffe I., Drummond B., Hinkley S., Mourier P., Venot O., 2016, *ApJ*, 817, L19

Tsai S.-M., Lyons J. R., Grosheintz L., Rimmer P. B., Kitzmann D., Heng K., 2017, *ApJS*, 228, 20

Tsai S.-M., Malik M., Kitzmann D., Lyons J. R., Fateev A., Lee E., Heng K., 2021, *ApJ*, 923, 264

Tsai S. M. et al., 2023, *Nature*, 617, 483

Tsao C. J., Curnutte B., 1962, *J. Quant. Spectrosc. Radiat. Transfer*, 2, 41

Tsuji T., 1973, *A&A*, 23, 411

Turbet M., Tran H., Pirali O., Forget F., Boulet C., Hartmann J.-M., 2019, *Icarus*, 321, 189

Turbet M., Boulet C., Karman T., 2020, *Icarus*, 346, 113762

Tytuřev V., Barbe A., Mikhailenko S., Starikova E., Babikov Y., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 272, 107801

Tóbiás R. et al., 2020, *Nat. Commun.*, 11, 1708

Underwood D. S., Tennyson J., Yurchenko S. N., Huang X., Schwenke D. W., Lee T. J., Clausen S., Fateev A., 2016a, *MNRAS*, 459, 3890

Underwood D. S., Tennyson J., Yurchenko S. N., Clausen S., Fateev A., 2016b, *MNRAS*, 462, 4300

Upadhyay A., Conway E. K., Tennyson J., Yurchenko S. N., 2018, *MNRAS*, 477, 1520

VAMDC, 2014, Virtual Atomic and Molecular Data Centres website. Access via: <https://vamdc.org/>. VAMDC, EU.

van den Bekerom D., Pannier E., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 261, 107476

Vangovichith M., Tran H., Hartmann J.-M., 2009, *J. Quant. Spectrosc. Radiat. Transfer*, 110, 2212

Vaughan S. R. et al., 2023, *MNRAS*, 524, 5477

Veillet R., Venot O., Sirjean B., Bounaceur R., Glaude P.-A., Al-Refaei A., Hébrard E., 2024, *A&A*, 682, A52

Venot O., Hebrard E., Agundez M., Dobrijevic M., Selsis F., Hersant F., Iro N., Bounaceur R., 2012, *A&A*, 546, A43

Venot O. et al., 2013, *A&A*, 551, A131

Venot O., Hebrard E., Agundez M., Decin L., Bounaceur R., 2015, *A&A*, 577, A33

Venot O., Drummond B., Miguel Y., Waldmann I. P., Pascale E., Zingales T., 2018a, *Exp. Astron.*, 46, 101

Venot O. et al., 2018b, *A&A*, 609, A34

Venot O., Cavalé T., Bounaceur R., Tremblin P., Brouillard L., Lhoussaine Ben Brahim R., 2020, *A&A*, 634, A78

Verstraete L., Leger A., D'Hendecourt L., Defourneau D., Dutuit O., 1990, *A&A*, 237, 436

Vicentini E. et al., 2020, *J. Quant. Spectrosc. Radiat. Transfer*, 248, 106963

Vigasin A., Mokhov I., 2017, *Izv. Atmos. Ocean. Phys.*, 53, 164

Villanueva G. L. et al., 2022, *Geophys. Res. Lett.*, 49, e2022GL098161

Villanueva G. L. et al., 2024, *Planet. Sci. J.*, 5, 64

Villanueva G. L., Smith M. D., Protopapa S., Faggi S., Mandell A. M., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 217, 86

Vispoel B., Gamache R. R., 2024, *J. Quant. Spectrosc. Radiat. Transfer*, 316, 108896

Visscher C., Lodders K., Bruce Fegley J., 2006, *ApJ*, 648, 1181

Visscher C., Lodders K., Fegley B., 2010, *ApJ*, 716, 1060

Viswanath G., Narang M., Manoj P., Mathew B., Kartha S. S., 2020, *AJ*, 159, 194

Viti S., Polyansky O. L., Zobov N. F., Tennyson J., Bernath P. F., Wallace L., 1998, in Donahue R. A., Bookbinder J. A., eds, *ASP Conf. Ser. Vol. 154, Cool Stars, Stellar Systems, and the Sun*. Astron. Soc. Pac., San Francisco, p. 718

Voronin B. A., Tennyson J., Tolchenov R. N., Lugovskoy A. A., Yurchenko S. N., 2010, *MNRAS*, 402, 492

Votava O., Kassi S., Campargue A., Romanini D., 2022, *Phys. Chem. Chem. Phys.*, 24, 4157

Vuitton V., Yelle R., Klippenstein S., Hörst S., Lavvas P., 2019, *Icarus*, 324, 120

Wakeford H. R., Sing D. K., 2015, *A&A*, 573, A122

Wakeford H. R., Visscher C., Lewis N. K., Kataria T., Marley M. S., Fortney J. J., Mandell A. M., 2016, *MNRAS*, 464, 4247

Wakeford H. R. et al., 2020, *AJ*, 159, 204

Wakelam V. et al., 2012, *ApJS*, 199, 21

Wallace L., Bernath P., Livingston W., Hinkle K., Busler J., Guo B., Zhang K., 1995, *Science*, 268, 1155

Wang Y., Tennyson J., Yurchenko S. N., 2020a, *Atoms*, 8, 7

Wang Y., Owens A., Tennyson J., Yurchenko S. N., 2020b, *ApJS*, 248, 9

Wang J., Hu C. L., Liu A. W., Sun Y. R., Tan Y., Hu S. M., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 270, 107717

Wang R., Balcunaite U., Chen J., Yuan C., Owens A., Tennyson J., 2023a, *J. Quant. Spectrosc. Radiat. Transfer*, 306, 108617

Wang F., Changeat Q., Tinetti G., Turrini D., Wright S. O. M., 2023b, *MNRAS*, 523, 4365

Wargnier A. et al., 2023, *A&A*, 669, A146

Warren S. G., Brandt R. E., 2008, *J. Geophys. Res.-Atmosphere*, 113, D14

Wcislo P. et al., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 260, 107477

Weast R. C., 1971, *Handbook of Chemistry and Physics*, 52nd edn. CRC Press, Boca Raton

Weichman M. L., Changala P. B., Ye J., Chen Z. J., Yan M., Picqué N., 2019, *J. Mol. Spectrosc.*, 355, 66

Weininger D., 1988, *J. Chem. Inf. Comput. Sci.*, 28, 31

Wende S., Reiners A., Seifahrt A., Bernath P. F., 2010, *A&A*, 523, A58

Wenzel G. et al., 2020, *A&A*, 641, A98

Western C. M., 2017, *J. Quant. Spectrosc. Radiat. Transfer*, 186, 221

Western C. M., Carter-Blatchford L., Crozet P., Ross A. J., Morville J., Tokaryk D. W., 2018, *J. Quant. Spectrosc. Radiat. Transfer*, 219, 127

Whiteford N. et al., 2023, *MNRAS*, 525, 1375

Wilkinson M. D. et al., 2016, *Sci. Data*, 3, 160018

Wilson E. H., Atreya S. K., 2004, *J. Geophys. Res.: Planets*, 109, E06002

Wilzewski J. S., Gordon I. E., Kochanov R. V., Hill C., Rothman L. S., 2016, *J. Quant. Spectrosc. Radiat. Transfer*, 168, 193

Wogan N. F., Batalha N. E., Zahnle K. J., Krissansen-Totton J., Tsai S.-M., Hu R., 2024, *ApJ*, 963, L7

Woitke P., Helling C., 2004, *A&A*, 414, 335

Woitke P., Helling C., Turner G., 2017, *Graphical Comparison of Mineral Gibbs Free Energy Data*. University of St Andrews, St Andrews, UK

Woitke P., Helling C., Hunter G. H., Millard J. D., Turner G. E., Worters M., Blecic J., Stock J. W., 2018, *A&A*, 614, A1

Wong A., Yurchenko S. N., Bernath P., Mueller H. S. P., McConkey S., Tennyson J., 2017, *MNRAS*, 470, 882

Wong A., Bernath P. F., Rey M., Nikitin A. V., Tyuterev V. G., 2019, *ApJS*, 240, 4

Wordsworth R., Kalugina Y., Lokshtanov S., Vigasin A., Ehlmann B., Head J., Sanders C., Wang H., 2017, *Geophys. Res. Lett.*, 44, 665

Worters M., Millard D., Hunter G., Helling C., Woitke P., 2017, *Comparison Catalogue of Gas-Equilibrium Constants*. St Andrews Research Repository, St Andrews

Wright S. O. M., Waldmann I., Yurchenko S. N., 2022, *MNRAS*, 512, 2911

Xu E., Tennyson J., 2024, *Mol. Phys.*, 122, e2279694

Xue B.-X., Barbatti M., Dral P. O., 2020, *J. Phys. Chem. A*, 124, 7199

Yadin B., Vaness T., Conti P., Hill C., Yurchenko S. N., Tennyson J., 2012, *MNRAS*, 425, 34

Yang D., Hu X., Zhang D. H., Xie D., 2018, *J. Phys. Chem.*, 148, 084101

Yang J., Irwin P. G. J., Barstow J. K., 2023, *MNRAS*, 525, 5146

Ycas G., Giorgetta F. R., Baumann E., Coddington I., Herman D., Diddams S. A., Newbury N. R., 2018, *Nat. Photonics*, 12, 202

Yousefi M., Bernath P. F., 2018, *ApJS*, 237, 8

Yousefi M., Bernath P. F., Dulick M., Birk M., Wagner G., 2021, *J. Quant. Spectrosc. Radiat. Transfer*, 263, 107557

Yurchenko S. N., Tennyson J., 2014, *MNRAS*, 440, 1649

Yurchenko S. N., Tennyson J., Bailey J., Hollis M. D. J., Tinetti G., 2014, *Proc. Nat. Acad. Sci.*, 111, 9379

Yurchenko S. N., Blissett A., Asari U., Vasilios M., Hill C., Tennyson J., 2016, *MNRAS*, 456, 4524

Yurchenko S. N., Amundsen D. S., Tennyson J., Waldmann I. P., 2017, *A&A*, 605, A95

Yurchenko S. N., Sinden F., Lodi L., Hill C., Gorman M. N., Tennyson J., 2018a, *MNRAS*, 473, 5324

Yurchenko S. N., Bond W., Gorman M. N., Lodi L., McKemmish L. K., Nunn W., Shah R., Tennyson J., 2018b, *MNRAS*, 478, 270

Yurchenko S. N., Szabo I., Pyatenko E., Tennyson J., 2018c, *MNRAS*, 480, 3397

Yurchenko S. N., Al-Refaei A. F., Tennyson J., 2018d, *A&A*, 614, A131

Yurchenko S. N., Smirnov A. N., Solomonik V. G., Tennyson J., 2019, *Phys. Chem. Chem. Phys.*, 21, 22794

Yurchenko S. N., Mellor T. M., Freedman R. S., Tennyson J., 2020a, *MNRAS*, 496, 5282

Yurchenko S. N., Tennyson J., Miller S., Melnikov V. V., O'Donoghue J., Moore L., 2020b, *MNRAS*, 497, 2340

Yurchenko S. N. et al., 2022, *MNRAS*, 510, 903

Yurchenko S. N., Nogué E., Azzam A. A. A., Tennyson J., 2023, *MNRAS*, 520, 5183

Yurchenko S. N. et al., 2024, *MNRAS*, 527, 9736

Yurchenko S. N., Mellor T., Tennyson J., 2024a, *MNRAS*, 534, 1364

Yurchenko S. N., Brady R. P., Tennyson J., Smirnov A. N., Vasilyev O. A., Solomonik V. G., 2024b, *MNRAS*, 527, 4899

Yurchenko S. N., Szajna W., Hakalla R., Semenov M., Sokolov A., Tennyson J., Pavlenko Y., Schmidt M. R., 2024c, *MNRAS*, 527, 9736

Yurchenko S. N., Owens A., Kefala K., Tennyson J., 2024d, *MNRAS*, 528, 3719

Yurchenko S. N. et al., 2024e, *MNRAS*, 533, 3442

Yurkin M. A., Hoekstra A. G., 2011, *J. Quant. Spectrosc. Radiat. Transfer*, 112, 2234

Zahnle K., Marley M. S., Morley C. V., Moses J. I., 2016, *ApJ*, 824, 137

Zapata Trujillo J. C., McKemmish L. K., 2022a, *WIREs Comput. Mol. Sci.*, 12, e1584

Zapata Trujillo J. C., McKemmish L. K., 2022b, *J. Phys. Chem. A*, 126, 4100

Zapata Trujillo J. C., McKemmish L. K., 2023, *J. Phys. Chem. A*, 127, 1715

Zapata Trujillo J. C. et al., 2021, *Front. Astron. Space Sci.*, 8, 639068

Zeidler S., Posch T., Mutschke H., Richter H., Wehrhan O., 2011, *A&A*, 526, A68

Zeidler S., Posch T., Mutschke H., 2013, *A&A*, 553, A81

Zeidler S., Mutschke H., Posch T., 2015, *AJ*, 798, 125

Zhan Z., Seager S., Petkowski J. J., Sousa-Silva C., Ranjan S., Huang J., Bains W., 2021, *Astrobiology*, 21, 765

Zhang M., Chachan Y., Kempton E. M.-R., Knutson H. A., Chang W. H., 2020, *AJ*, 899, 27

Zhang J., Tennyson J., Yurchenko S. N., 2024, *RASTI*, 3, 257

Zhao L. et al., 2018, *Nat. Astron.*, 2, 973

Zhen J. et al., 2016, *ApJ*, 822, 113

Zhou J. et al., 2020, *Nat. Commun.*, 11, 1547

Zimmer K., Zhang Y., Lu P., Chen Y., Zhang G., Dalkilic M., Zhu C., 2016, *Comput. Geosci.*, 90, 97

Zingales T., Tinetti G., Pillitteri I., Leconte J., Micela G., Sarkar S., 2018, *Exp. Astron.*, 46, 67

Zobov N. F. et al., 2008, *MNRAS*, 387, 1093

Zolot A. M., Giorgetta F. R., Baumann E., Swann W. C., Coddington I., Newbury N. R., 2013, *J. Quant. Spectrosc. Radiat. Transfer*, 118, 26

¹HH Wills Physics Laboratory, School of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

²Centre for Exoplanet Science, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK

³Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Av. Circulaire 3, B-1180 Uccle, Belgium

⁴Bard College, Institute of Astrophysics and Space Sciences, 30 Campus Rd, Annandale-On-Hudson, NY 12504, USA

⁵Institute of Astrophysics and Space Sciences, Rua das Estrelas, P-4150-762 Porto, Portugal

⁶Department of Physics and Astronomy, University College London, London WC1E 6BT, UK

⁷Observatoire de Paris, PSL Research University, 61, Avenue de l'Observatoire, F-75014 Paris, France

⁸Lab. ICB, UMR 6303 CNRS / Université de Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex, France

⁹Institut UTINAM, UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, F-25030 Besançon Cedex, France

¹⁰GEOPS, Université Paris-Saclay, CNRS, F-91405 Orsay, France

¹¹LESIA, Paris Observatory, CNRS, PSL Univ., 5 place Jules Janssen, F-92190 Meudon Cedex, France

¹²Department of Physics, Umeå University, SE-901 87 Umeå, Sweden

¹³Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

¹⁴Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria

¹⁵TU Graz, Fakultät für Mathematik, Physik und Geodäsie, Petersgasse 16, A-8010 Graz, Austria

¹⁶Atomic and Molecular Data Unit, International Atomic Energy Agency, Wagramer Strasse 5, A-1400 Vienna, Austria

¹⁷Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France

¹⁸Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, the Netherlands

¹⁹Institute of Astronomy, KU Leuven, Celestijnenlaan 200D bus 2401, B-3001 Leuven, Belgium

²⁰IAPS-INAF, Via Fosso del Cavaliere 100, 00133, Rome, Italy

²¹Université de Reims Champagne-Ardenne, UMR CNRS 7331, BP 1039, F-51687 Reims Cedex 2, France

²²Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, D-17489 Greifswald, Germany

²³Fakultät für Physik, Ludwig-Maximilians-Universität München, Scheinerstraße 1, D-81679 München, Germany

²⁴School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

²⁵Dipartimento di Fisica, La Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy

²⁶University of Paris-Saclay and ENS Paris-Saclay, LATMOS, 11 boulevard d'Alembert, F-78280 Guyancourt, France

²⁷V.E. Zuev Institute of Atmospheric Optics SB RAS, 1, Akademian Zuev Sq., Tomsk 634055, Russia

²⁸Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, F-91191 Gif-sur-Yvette, France

²⁹Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA

³⁰Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Parks Rd, Oxford OX1 3PU, UK

³¹J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, CZ-18223 Prague, Czech Republic

³²CQE, IMS, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

³³Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada, Spain

³⁴Institut d'Astrophysique de Paris (CNRS, Sorbonne Université), 98bis Bd Arago, F-75014 Paris, France

³⁵Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany

³⁶Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA

³⁷Martin A. Fisher School of Physics, Brandeis University, 415 South St, Waltham, MA 02453, USA

³⁸SRON Netherlands Institute for Space Research, Niels Bohrweg 4, NL-2333 CA Leiden, the Netherlands

³⁹Dipartimento di Fisica e Astronomia, Università degli studi di Padova, Vicolo dell'Osservatorio 3, I-35122 Padova, Italy

⁴⁰INAF, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova, Italy

This paper has been typeset from a *TeX/LaTeX* file prepared by the author.